APPENDIX M

SPILL PREVENTION AND RESPONSE PLAN
CITY OF RAPID CITY

Spill Prevention and Response Plan

2003
Updates 2007, 2015
TABLE OF CONTENTS

GENERIC SPILL RESPONSE PLAN 3
 EMERGENCY NUMBERS 3
 SUGGESTED MINIMUM SPILL RESPONSE EQUIPMENT 3
FOR SMALL SPILLS 3
MEDIUM SPILLS 4
LARGE SPILLS 5
STORM WATER SPILL REPORTING FORM 6

SPILL PREVENTION, CONTROL AND COUNTERMEASURES PLAN
 SOLID WASTE FACILITY 8
 STREET DEPARTMENT FACILITY 26
 WATER RECLAMATION FACILITY 39
 AIRPORT FACILITY 52
GENERIC SPILL RESPONSE PLAN

EMERGENCY NUMBERS

Hazardous Materials Emergency Response Team (HMERT)
Fire Station 6 Officer
605-394-5220 or
605-394-4180

Stormwater Pollution Prevention Hotline
Phase II Manager
605-394-4154

Fire Department Police
Emergency – “911” Emergency – “911”
Non-Emergency – 394-4180 Non-Emergency – 394-4133

Suggested Minimum Spill Response Equipment

25 kg of “Loose” Absorbent
1 – Absorbent Booms
20 – Absorbent Pads
1 – Shovel
1 – Broom

SMALL SPILLS (less than 10 liters)

1. Make sure area is safe for entry and the spill does not pose an immediate threat to health or safety of responder.

2. Stop source of spill (plug hole, upright the container, shut off valve).

3. Check for hazards (flammable material, noxious fumes, cause of spill). If flammable liquid is spilled, turn off engines and nearby electrical equipment. If serious hazards are present leave the area and call 911.

4. Stop spill from entering drain (use absorbent or other material as necessary, close valve to drain, cover or plug drain).

5. If spilled material has entered a storm sewer, then check oil/water interceptor or catch basins then notify the municipality: 394-4154

6. If spilled material has entered the sanitary sewer then after checking oil/water interceptor or catch basins contact Water Reclamation at 394-4174.
7. Clean up spilled material/absorbent (do not flush area with water).

8. Dispose of cleaned material/absorbent into secure container for disposal as hazardous waste.

9. Make sure cleaned area is not slippery (if slippery, put down no-slip material or mark area with a "slippery when wet" sign).

11. Document spill and actions taken to abate the spill.

MEDIUM SPILLS (10<100 liters)

1. Make sure area is safe for entry and the spill does not pose an immediate threat to health or safety of responder.

2. Stop source of spill (plug hole, upright the container, shut off valve).

3. Check for hazards (flammable material, noxious fumes, cause of spill). If flammable liquid is spilled, turn off engines and nearby electrical equipment. If serious hazards are present leave the area and call 911. When in doubt, consult the Hazardous Material Emergency Response Team (HMERT) at 394-5220 or 394-4180.

4. Call co-workers and supervisor for assistance and to make them aware of the spill and potential dangers.

5. Stop spill from entering drain (use absorbent or other material as necessary, close valve to drain, cover or plug drain).

6. Stop spill from spreading (use absorbent or other material).

7. If spilled material has entered a storm sewer, then check oil/water interceptor or catch basins then notify the municipality: 394-4154

8. If spilled material has entered the sanitary sewer then after checking oil/water interceptor or catch basins contact Water Reclamation at 394-4174.

9. Clean up spilled material/absorbent (do not flush area with water).

10. Dispose of cleaned material/absorbent into secure container for disposal as hazardous waste.

11. Make sure cleaned area is not slippery (if slippery, put down no-slip material or mark area with a "slippery when wet" sign).

12. Document spill and actions taken to abate the spill.
LARGE SPILLS (Greater than 100 liters)

1. Make sure area is safe for entry and the spill does not pose an immediate threat to health or safety of responder.

2. Stop source of spill (plug hole, upright the container, shut off valve).

3. Check for hazards (flammable material, noxious fumes, cause of spill). If flammable liquid is spilled, turn off engines and nearby electrical equipment. If serious hazards are present leave the area and call 911. LARGE SPILLS ARE LIKELY TO PRESENT A HAZARD.

4. Call co-workers and supervisor for assistance and to make them aware of the spill and potential dangers.

5. If possible, stop spill from entering drain (use absorbent or other material as necessary, close valve to drain, cover or plug drain).

6. Stop spill from spreading (use absorbent or other material).

7. Call 911 to report spill.

8. If spilled material has entered a storm sewer, then check oil/water interceptor or catch basins then notify the municipality: 394-4154

9. If spilled material has entered the sanitary sewer then after checking oil/water interceptor or catch basins contact Water Reclamation at 394-4174.

10. Clean up spilled material/absorbent (do not flush area with water).

11. Dispose of cleaned material/absorbent into secure container for disposal as hazardous waste.

12. Make sure cleaned area is not slippery (if slippery, put down no-slip material or mark area with a "slippery when wet" sign).

13. Document spill and actions taken to abate the spill.
Storm Water Spill Reporting Form

Complete this two page form for any spill.

Date: ___________________________ Time of Spill: ___________________________

Responsible department name, address and phone:

Product spilled: ______________________ Estimated quantity spilled: ___________

Where did spill occur (address) and what was done immediately to contain spill:

__
__
__

Describe the source and cause of the spill.

__
__
__

If spill was preventable, what will be done to minimize the possibility of reoccurrence of this spill:

__
__
__

Person Reporting Spill: ____________________________ (printed name and title)

___ (signature) Date ___________
SPILL/RELEASE REPORTING

Date/Time Contacted

Rapid City Hazardous Material Response Team 911
City phone system 9-911

Supervisor Contact Information: work
home
cell

South Dakota Response (605) 773-3296
Department of Environment and Natural Resources (605) 773-3231
After hours

National Response Center (800) 424-8802

SARA Title III (800) 433-2288

A responsible party must report the discharge of a regulated substance to the Department of Environment and Natural Resources immediately.

Reporting is required when:

- The discharge may impact waters of the state (surface or ground water);
- The discharge may endanger human health or safety;
- The discharge exceeds 25 gallons;
- The discharge causes a sheen on surface water;
- Surface water, groundwater, or soil standards are exceeded;
- The discharge may threaten to harm aquatic life, wildlife, or plant life;
- The discharge quantity exceeds the SARA Title III reportable quantity.
SOLID WASTE FACILITY

Spill Prevention, Control and Countermeasures Plan

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Approval and Resource Commitment</td>
<td>2</td>
</tr>
<tr>
<td>Professional Engineer Certification</td>
<td>2</td>
</tr>
<tr>
<td>General Facility Information</td>
<td>3</td>
</tr>
<tr>
<td>-legal and physical location</td>
<td></td>
</tr>
<tr>
<td>-facility contact information</td>
<td></td>
</tr>
<tr>
<td>Facility Conformance with 40 CFR Part 112.7</td>
<td>3</td>
</tr>
<tr>
<td>-map locations and facility descriptions</td>
<td></td>
</tr>
<tr>
<td>Spills and Discharges</td>
<td>9</td>
</tr>
<tr>
<td>Inspections, Tests and Records</td>
<td>10</td>
</tr>
<tr>
<td>-repair documentation</td>
<td></td>
</tr>
<tr>
<td>Personnel Training and Discharge Prevention Procedures</td>
<td>10</td>
</tr>
<tr>
<td>Security</td>
<td>11</td>
</tr>
<tr>
<td>Subpart B Compliance</td>
<td>11</td>
</tr>
<tr>
<td>Subpart C Compliance</td>
<td>11</td>
</tr>
<tr>
<td>Pictures – Solid Waste Facility Tanks</td>
<td>12</td>
</tr>
</tbody>
</table>

Attachments

1. Figure 1 – Solid Waste Facility AST Locations
2. Figure 2 - Topographic Contour Map – Solid Waste Facility
3. Spill Reporting Guide and Form
4. Drain Form
5. Monthly Aboveground Tank Inspection Form
6. Record of SPCC Repair
7. Spill Prevention Training Guideline
8. Regulations 40 CFR 112
9. Substantial Harm Criteria and Certification
MANAGEMENT APPROVAL

This Spill Prevention Control and Countermeasures (SPCC) Plan for Rapid City Solid Waste Facility, 5555 S. Highway 79, Rapid City, SD 57701 will be implemented as herein described. This Plan has the full approval of management at a level of authority to commit the necessary resources to fully implement the Plan.

Compliance with 40 CFR Part 112 does not in any way relieve the owner or operator of an onshore or offshore facility from compliance with other Federal, State or Local Laws.

Signature:

Name:

Title:

Date:

CERTIFICATION

I hereby certify that I have examined the facility, and being familiar with the provisions of 40 CFR Part 112, attest that this SPCC Plan for Rapid City Solid Waste Facility, 5555 S. Highway 79, Rapid City, SD 57701 has been prepared in accordance with good engineering practices. I attest that procedures for required inspection and testing have been established in this plan and are adequate for this facility.

Printed Name of Registered Professional Engineer

Signature of Registered Professional Engineer

Date: ____________ Registration No. ____________ State: ____________
SPILL PREVENTION CONTROL AND COUNTERMEASURES PLAN

General Facility Information

Name of Facility: City of Rapid City Solid Waste Facility
Type of Facility: Landfill, Material Recovery Facility and Collection Base
Location of Facility: 5555 South Highway 79, Rapid City, SD 57701
Legal Description: E 1/2, Section 19, R8E, T11N
Latitude and Longitude: 44° 02' lat, 103° 11' long

Name and Address of Owner:
City of Rapid City
300 6th Street
Rapid City, SD 57701

Name, Address and Telephone of Operator:
Solid Waste Facility
5555 South Highway 79
Rapid City, SD 57701
Telephone: (605) 355-3496

Designated person accountable for oil spill prevention at the facility:
Karl Merbach
Solid Waste Operations Superintendent
Telephone: (605) 355-3496

A. Facility Conformance with 40 CFR Part 112.7

1. This is the SPCC plan for the City Solid Waste Facility. This plan is based on the amended regulations dated July 17, 2002, and follows the alphabetical layout as found in 40 CFR Part 112.7. The following text discusses the facility conformance with these regulations.
2. This plan complies with all applicable requirements listed in this part for an onshore facility. The Rapid City Solid Waste Facility stores only oil products for heat generation, equipment operation and fleet maintenance activities.

3. Rapid City Solid Waste Facility has on-site fueling tanks. Some equipment and most fleet fueling are done at an off-site fleet fueling station and the remainder, equipment and trucks, are fueled on-site. Waste oil is stored for heating and new oil is stored for equipment operation and fleet maintenance. A waste oil heater is located in the west shop. It has a 250 gallon tank. The solid waste facility has no underground storage and an above ground storage capacity of 12,390 gallons of oil products. All above ground storage (AST) sites have adequate spill control and counter-measures in place to contain or cleanup a spill prior to contamination of navigable waters. The landfill has several tanks dedicated to water for fire suppression, dust control and compost watering. Dedicated water tanks are marked “water only”. All other tanks and drums that are not presently in use and not slated for disposal, are marked “permanently closed” with a closure date.

Attachment 1 contains facility maps and corresponding tables. Figure 1 is the aerial photo of the facility. This photo shows the entire facility and all oil storage locations owned and operated by Rapid City Solid Waste Facility. Figure 2 is a topographic contour map of the facility. It shows elevation contours for the Solid Waste Facility and provides a broader look at regional flow directions. Features on Tables 1 and 2 are labeled and located on Figure 1. Each letter designates an oil product storage site. Tables 1 and 2 list the letters and give more information about each storage site. Each map location is discussed in more detail in the following paragraphs.

Map location A, Figure 1 is the southwest corner of the Material Recovery Facility (MRF). A 500 gallon above ground storage (AST) diesel fuel tank is located here. This tank is for fueling a limited number of city owned vehicles. It is a round painted metal tank that sits inside a metal painted secondary containment structure. The secondary containment structure has a capacity of 961 gallons. The drain-pipe from this containment structure is securely capped. Normal procedure is to allow rainwater that accumulates in the containment structure to evaporate. Should evaporation prove to be inadequate for removal of the water, the water will be removed by pumping after visual inspection by properly trained personnel. This inspection will ensure that the water does not have visible oil sheen. Discharge, to the storm drain, will occur only after proper inspection and documentation of no oil sheen. Each drain event is documented using the form contained in Attachment 3 – Drain Form. Completed drain forms will be maintained in the same attachment to this plan.

Fuel deliveries arrive in a 5500 gallon transport with the largest compartment of 2000 gallons. This tank does not have a loading/unloading rack. Fueling of this tank occurs through the top of the tank using a transfer hose with an automatic shut off nozzle. The fueling port is located inside the secondary containment. The tank has a float activated sight gauge. Nozzle is attended at all times during tank filling and equipment fueling. The tank pump is powered by the battery on the vehicle being fueled, with cables. A spill kit is located adjacent to this tank in case of over filling or leakage from the transport. A storm drain inlet is located approximately 25 feet north of this tank. Storm drains dump to on-site retention pond before discharge. The solid waste facility has a surface water discharge permit which includes discharges from this pond.

The MRF Supervisor or his designated representative examines the secondary containment and tank for signs of leakage monthly. Attachment 4 of this plan contains a form to document the monthly AST inspection of this tank. Completed inspection forms are maintained in the same attachment to this plan.

There is no above ground piping associated with this tank. Therefore, no warning signs are warranted.
The solid waste facility has various security features. The outside access to the facility is completely fenced with padlocked secondary gates and a keyed main entrance gate. There is no fencing right around this fuel tank, but it is located within the fenced facility perimeter. Tank hatches are securely fastened when not open for fueling. The emergency shut-off for this tank is disconnection of a battery cable. Exterior building lights, in the area of this tank, are sufficient to discover discharges occurring during hours of darkness and to detour vandalism.

A method to prevent vehicles from departing before complete disconnection of flexible or fixed oil transfer lines is presently in place. A yellow caution sign is installed in a highly visible location to a delivery truck driver, adjacent to the tank. This sign reads:

WARNING! Before departure
- Disconnect all transfer lines
- Check for leakage on truck

Map location B, Figure 1 is the hydraulic room inside the MRF. This room has a 2400 gallon hydraulic fluid tank for the motors that operate the Dano drums. The tank is painted metal with sight gauges on the end. The tank circulates hydraulic fluid through the pumps, motors and cooling units, back into the tank. When the fluid begins to break down it is pumped into 55 gallon drums and replaced by new fluid from drums. Drums full of used fluid are transferred to the east shop at the landfill for storage and use in the waste oil heater. This tank is not double walled and has a drip pan but no tub style secondary containment. A tank rupture or spill during transfer of fluid is the most likely opportunity for a spill. The room acts as secondary containment for the tank. It is a 24 feet x 24 feet room with plugged floor drains and socks readily available for placement at the base of the two walk in doors and overhead door. The floor slope will contain any spill within the building. Spills will be immediately contained with booms or floor dry and contained fluid will be pumped into drums and taken to the east landfill shop for heater fuel.

The MRF Supervisor or his designated representative examines the secondary containment and tank for signs of leakage monthly. Attachment 4 of this plan contains a form to document the monthly AST inspection of this tank. Completed inspection forms are maintained in the same attachment to this plan.

The above ground, outside piping for this part of the MRF is extensive. Piping from the hydraulic fluid reservoir feeds through painted metal pipes to the motors under the drums. Just before the motors the piping switches to flexible rubber high pressure hydraulic lines. The return lines are rubber switching to painted metal from the motors to the hydraulic fluid coolers and back into the building to the reservoir. Most of the metal piping and all hoses are outside the MRF on the north end of the building. A concrete slab is underneath all outdoor piping. The slab has a painted metal spill dike, secured to the slab with urethane, around the entire area under the drum piping, motors and coolers. This containment is 70 feet long x 70 feet wide x 0.5 feet deep. It is capable of containing about 18,000 gallons of fluid in the event of a line rupture or piping failure. Pumps from the reservoir pump at a rate of 120 gpm per pump. This area is fenced with six foot chain link and a padlocked gate. The chance of damage to this piping by vehicles is minimal. Therefore, no warning signs are warranted.

The MRF has several security features in and around the hydraulic tank and drums. The entire solid waste facility has a perimeter fence with keyed gates. The hydraulic tank is located in a room within a building. Both the room and the building are locked outside of work hours. The reservoir has an automatic pump shutdown feature. If a line should rupture approximately 125 gallons of fluid will be released prior to pump shutdown. This minimizes any spill related to this AST. Lights on the outside of the building and a nearby light pole provide adequate light to discover discharges occurring during hours of darkness and to detour vandalism.
This tank is not fueled by a bulk truck. **Map location C, Figure 1** is the west landfill shop. Inside this shop are two water tanker trucks with 3500 gallons total capacity, a 250 gallon waste oil heater tank and nighttime storage for two on-site service pickups with total gas and diesel capacity of 225 gallons. The two tanker trucks are completely dedicated to hauling water for fire control, dust suppression and watering of compost windrows. No fuel products are stored or hauled in either of these tankers. The waste oil heater tank is painted metal that sits inside an open top secondary containment made of painted metal with a capacity of 390 gallons. This tank and all product lines are within the shop which has a concrete floor and no discharge sump. The dispensing rate to the heater is about one gallon per eight hours. Two pickups are equipped with small bulk fuel tanks. One pickup has one 75 gallon diesel tank and one 75 gallon gas tank on the back. The other pickup has one 75 gallon diesel tank in the back. Two tanks are equipped with electric pumps which run off the vehicle battery and dispense at a rate of about two gallons per minute. The third is a hand pump which dispenses at about 1/8 gallon per minute. All three tanks have padlocked fill spout caps and padlocked automatic dispensing nozzles. Gasoline is picked up at the off-site fleet fueling station. Diesel is filled onsite from the 4000 gallon diesel tank. Both pickups are used to fuel vehicles, air compressors, screens and other on-site vehicles. Each pickup has a portable spill kit for use if a spill occurs while mobile. At night these pickups are stored inside a shop with a concrete floor and a central floor drain that either discharges to a no discharge sump or a sand interceptor which drains to the sanitary sewer. Tank rupture or overfill is the major potential failure of the waste oil heater tank and the portable fuel tanks.

This shop also contains about 18-55 gallon drums of oil products including waste oil, multi-grade motor oils and hydraulic fluid. A complete inventory of these drums is included in Attachment 1, Table 2.

Eight of these new oil product barrels are located on a horizontal barrel rack. This rack has a painted metal secondary containment structure that is 11’ long x 3.5’ wide x 0.25’ deep with a capacity of 72 gallons. Barrels are lifted in to place on this rack by an overhead hoist. Major failure for all drummed product includes overfilling transfer containers, tipping or dumping with open valve, and rupturing during transfer. Floor dry is readily available to clean up a spill or leak.

This shop is locked after work hours. The building has sufficient lighting inside to detect a spill.

Map location D, Figure 1 is the street shop storage yard. A 5,000 gallon tank that appears to have been from an old fuel delivery truck is stored in this yard. It was previously used to store magnesium chloride water for deicing operations by the street department. Other tanks are also stored in this area. The size, purpose and number of tanks being stored varies. All tanks stored in this are empty and marked “permanently closed 10/03”.

Map location E, Figure 1 is the top road to the composting pad where a large white, 10,000 gallon tank is located. This tank is not used for oil product storage. It is marked “permanently closed 10/03”.

Map location F, Figure 1 is near the northwest corner of the operations shack. It is a 4,000 gallon dyed diesel fuel tank for on-site equipment. The tank has a concrete secondary containment structure, 35’ long x 13’ wide x 2.5’ deep with a capacity of 8,508 gallons. The pump on the west end of the tank is located over the secondary containment structure. It has a dispensing rate of about 10 gallons per minute. The drain pipe from this secondary containment is securely capped. Normal procedure is to allow rainwater that accumulates in the containment structure to evaporate. Should evaporation prove to be inadequate for removal of the water, the water will be removed by pumping after visual inspection by properly trained personnel. This inspection will ensure that the water does not have visible oil sheen. Discharge, to the natural surface water drainage, will occur only after proper inspection and documentation of no oil
sheen. Each drain event is documented using the form contained in Attachment 3 – Drain Form. Completed drain forms will be maintained in the same attachment to this plan.

Fuel deliveries arrive in a 5500 gallon transport with the largest compartment of 2000 gallons. This tank does not have a loading/unloading rack. Fueling of this tank occurs through a screw-cap, top hatch using a transfer hose with an automatic shut off nozzle. The fueling hatch is located within the secondary containment structure. Nozzle is attended at all times during fueling. The tank has a float activated sight gauge and is measured with a graduated stick weekly. Fuel inventory is tracked at the scale house. Fuel is delivered once every two weeks. A large spill kit is located on the west end of the tank by the stairs. Flow in the event of a spill may be northeast to a ditch and then southeast. There are no storm drains in the vicinity of this tank. Flow following surface water drainage ways on-site will travel about 2,220 feet before it reaches the retention pond. Discharge from this pond is controlled to meet surface water discharge permit requirements. Sufficient equipment and personnel are readily available to respond to a spill at this location and contain it prior to any contact with surface water.

There is no above ground piping outside of the secondary containment. There is a minimal chance for this piping to be damaged by small vehicles. It is possible that it could be damaged by some of the equipment.

The solid waste facility has numerous security features. The perimeter of the facility is fenced with locked entry gates. There is one light pole in the area of this tank. It may not be sufficient to discover a spill or leakage, but strong diesel fuel odor may be a more rapid indicator of a problem.

A method to prevent vehicles from departing before complete disconnection of flexible or fixed oil transfer lines is presently in place. A yellow caution sign is installed in a highly visible location to a delivery truck driver, adjacent to the tank. This sign reads:

WARNING! Before departure
-Disconnect all transfer lines
-Check for leakage near truck drains and outlets

Map location G, Figure 1 is the MRF maintenance shop. This shop stores one 55-gallon drum of waste oil. It is used to collect waste oil from oil changes on miscellaneous small equipment. This drum does not have secondary containment. Floor dry is readily available for any spill that may occur from this drum. This shop is totally enclosed with a concrete floor. Floor drains are plugged.

Map location H, Figure 1 is the east landfill shop. This shop is predominately cold storage for landfill operations. A large 500 gallon plastic tank for dust suppression water only is stored in this shop. Thirty nine barrels of waste oil were in this shop at the time of the physical inspection. This number varies from zero to forty-five barrels at any time based on waste oil usage in the heaters and generated waste oil requiring storage prior to use. There is no secondary containment specifically designed and built for the drums. The floor dry, concrete floor and no discharge sump act as secondary containment.

Major failure for all drummed product includes overfilling transfer containers, tipping or dumping with open valve, and rupturing during transfer. Floor dry is readily available to clean up a spill or leak. The building is totally enclosed with a concrete floor. The floor has a trough style floor drain attached to a no discharge sump in the northwest corner of the building. This shop is locked at all times. The shop has lighting inside and out sufficient to detect vandals and spills.
The Landfill Supervisor or his designated representative examines the barrel storage area for signs of leakage monthly. Attachment 4 of this plan contains a form to document the monthly AST inspection for this drum storage. Completed inspection forms are maintained in the same attachment to this plan.

Map location I, Figure 1 is the south landfill shop. Up to ten 55 gallon drums of multi-grade oil products are stored inside this shop within a metal painted secondary containment structure. This secondary containment structure is a minimum of 9 feet long x 3.3 feet wide x 0.3 feet deep. It has about 66 gallons of capacity. All oil containing barrels are of painted steel. An inventory of these drums is included in Attachment 1, Table 2.

Barrels are lifted into the oil storage rack by a service truck mounted boom or a roller mounted overhead hoist. Major failure for all drummed product includes overfilling transfer containers, tipping or dumping with open valve and rupturing during transfer. Floor dry is readily available to clean up a spill or leak outside the containment.

There is no piping related to this oil storage.

The shop is located within the fenced perimeter of the landfill. The front entrance gate is a keyed access. The shop is locked after work hours. The shop has sufficient light to readily detect, contain and cleanup a spill.

Map location J, Figure 1 is the landfill operations shack. Four to five 55-gallon drums of multi-grade oil products are stored inside this shack within a metal painted secondary containment structure. This secondary containment structure is 0.5’ deep x 4’ wide x 9’ long = about 81 gallons of capacity after considering storage taken up by drums sitting right in the secondary containment structure. All oil containing barrels are of painted steel. An inventory of these drums is included in Attachment 1, Table 2.

Barrels are lifted into the oil storage room by a service truck mounted boom and moved inside the building with an overhead hoist. Major failure for all drummed product includes overfilling transfer containers, tipping or dumping with open valve and rupturing during transfer. Floor dry is readily available to clean up a spill or leak.

There is no piping related to this oil storage.

This shack is located within the fenced perimeter of the landfill. The front entrance gate is a keyed access. This shack is not commonly locked but is located out of sight of the main entrance. The storage room has sufficient lighting to detect a spill.

Map location K, Figure 1 is the baler room inside the MRF. The room has a 450 gallon hydraulic fluid tank for the motor and baler hydraulics. The tank is painted metal. The tank circulates hydraulic fluid through the baler. When the fluid begins to break down it is pumped into 55 gallon drums and replaced by new fluid from drums. Drums full of used fluid are transferred to the east shop at the landfill for storage and use in the waste oil heater. This tank is not double walled but has about a 4” deep drip pan. It has no tub style secondary containment. A tank rupture or spill during transfer of fluid is the most likely opportunity for a spill. The room acts as secondary containment for the tank. The room is 50 feet x 80 feet with plugged floor drains and a spill kit readily available for clean up of spills. The floor slope and a recessed area below the baler conveyor will contain any spills within the building. Spills will be immediately contained with booms or floor dry. All contained fluid will be pumped into drums and taken to the east landfill shop for heater fuel.
The MRF Supervisor or his designated representative examines the tank for signs of leakage monthly. Attachment 4 of this plan contains a form to document the monthly AST inspection of this tank. Completed inspection forms are maintained in the same attachment to this plan.

There is no outside piping for the baler. The chance of vehicular damage to the equipment piping is minimal. Therefore, no warning signs are warranted.

The MRF has several security features in and around the baler hydraulic tank. The entire solid waste facility has a perimeter fence with keyed gates. The hydraulic tank is located in a room within a building. Both the room and the building are locked outside of work hours. The room is equipped with a spill kit.

This tank is not fueled by a bulk truck.

4. Spills and Discharges:

At the time of a spill, the person reporting the spill must complete the form in Attachment 2.

Equipment fuel storage: A spill kit is located adjacent to the pump, beneath the metal landing, on the northwest end of the 4,000 gallon diesel tank. Another spill kit is located adjacent to the 500 gallon diesel fuel tank at the MRF. These kits are available for cleanup and containment of minor spills. In the event of a large spill within the secondary containment, recovered product will be handled according to guidance from the State Department of Environment and Natural Resource. Large spills outside of the secondary containment, such as from a ruptured transport or open line, will be contained in the surface water drainage ditch on the east/southeast side of the tank by blocking the culvert on the south end of this ditch.

The fire department and the Rapid City Hazmat team will respond to any major spill. Equipment and personnel are readily available on-site to assist. Any soil contaminated during a spill of fuel or oil product can be disposed of at the Rapid City Landfill after required testing and analysis indicating the waste is non-hazardous. Any contaminated booms or absorbents may be disposed of at the Rapid City Landfill. Refer to Attachment 2 for a spill reporting guide.

Waste oil heater tank and new oil product storage in buildings: A spill kit or adequate quantities of floor dry are located in each shop. This absorbent material is available for cleanup and containment of minor spills. In the event of a large spill within the secondary containment, recovered product will be placed back into competent waste oil storage containers or absorbed in absorbent material. Large spills outside of the secondary containment such as from a ruptured portable storage tank, unattended transfer line or leaking distribution nozzle, will be contained by the shop floor and/or shop floor drain system. The fire department will respond in addition to Rapid City Hazmat team if necessary. Equipment and personnel are readily available on-site to assist. Any absorbents contaminated during a spill of fuel or oil product can be disposed of at the Rapid City Landfill after required testing, analysis indicating the waste is non-hazardous, and with approval of the facility operator. Refer to Attachment 2 for spill reporting guide.

55-gallon drums: Secondary containment sufficient to contain a spill from the largest storage tank exists for all waste oil storage. In the event of a large spill within the secondary containment, recovered product will be placed back into competent waste oil storage containers or absorbed in absorbent material. In the event of a spill, floor dry and other oil absorbent material will be applied immediately to contain the spill at the source. Equipment and personnel are readily available on-site to assist. Any soil or absorbent contaminated during a spill of fuel or oil product can be disposed of at the Rapid City Landfill after required testing, analysis
indicating the waste is non-hazardous, and with approval of the facility operator. Refer to Attachment 2 for spill reporting guide.

Service pickups: The service pickups used by solid waste operations are regulated by DOT when mobile. Any time they are parked, they are covered by this spill prevention plan. Secondary containment exists in any of the facility shops for temporary or long term parking. In the event of a spill within one of these shops, recovered product will be absorbed in absorbent material. Equipment and personnel are readily available on-site to assist. Any soil or absorbent contaminated during a spill can be disposed of at the Rapid City Landfill after required testing, analysis indicating the waste is non-hazardous. Refer to Attachment 2 for spill reporting guide.

If a discharge should occur at the facility, the spill will be documented, reported and recorded using the Spill Reporting Form contained in Attachment 2. After completion of the form, it will be retained in Attachment 2 of this SPCC plan and forwarded to the appropriate state and/or Federal agencies listed in Attachment 2, if the spill is a reportable quantity. See Attachment 2 for all spill reporting contacts and a complete definition of a reportable quantity.

If the Regional Administrator requires a plan amendment after review of the submitted information, refer to Section 112.4 (d) for a description of notification procedures, timeframes for amendment, and the appeal process. See Attachment 7 for a copy of the regulations.

5. **Refer to number 4 above for spill related information.**

Inspections, tests and records are addressed above with the information given for the map locations. With adoption and implementation of this plan, the facility will conduct monthly tank inspections using the form contained in Attachment 4. Upon completion of the inspection, the completed form will be placed back in Attachment 4 of this SPCC Plan.

If, during an inspection, it is discovered that a repair of the aboveground tanks or related equipment is required, the appropriate repair will be done. Upon completion of material repairs, the tank will be tested for leaks, by an appropriate means, prior to refilling with oil product. All repairs will be documented using the form contained in Attachment 5. Completed forms will be inserted back in Attachment 5 of this SPCC Plan.

Personnel training and discharge prevention procedures will be taught as per the regulations:

1. Oil handling personnel will be properly instructed in the following:

 a. Operation and maintenance of equipment to prevent oil discharges,

 b. Spill response and reporting,

 c. Applicable pollution control laws, rules and regulations,

 d. General facility operations, and

 e. The contents of the SPCC plan.

 To date the facility has not conducted personnel training concerning the above. With implementation of this SPCC Plan, the facility will begin conducting and documenting training in accordance with the guidelines contained in Attachment 6.
2. Prevention briefings for the operating personnel are scheduled and conducted annually to assure understanding of this SPCC Plan.

The facility will conduct a formal employee-briefing program. Upon adoption of this SPCC Plan, in accordance with the guidelines contained in Attachment 6, this facility will also conduct discharge prevention briefings for oil handling personnel.

Security is provided at all oil product storage areas.

A perimeter fence with controlled access gates, limits access to the entire facility. New oil storage and waste oil heater tanks are located within locked buildings within the fenced areas during non-work hours. During work hours there are personnel around the area, and gates and shop doors are open. All valves or starter controls for oil handling within buildings are located within a secure locked area that can only be accessed by authorized personnel. The facility has adequate lighting to allow for the discovery of spills during hours of darkness and for the prevention of spills occurring by acts of vandalism.

The maintenance shops that contain usable oil product and waste oil storage are within a well lit fenced area that limits entrance during non-work hours to authorized personnel. All site buildings, except the operations shack, are locked after work hours.

This facility does not contain a tank car and tank truck loading/unloading rack.

Repairs will be made and documented as per the inspection, tests, and records section above.

B. Requirements for Onshore, Non-production Facilities Storing Petroleum and Non-Petroleum Oils

The solid waste facility uses only containers compatible with the material stored and conditions of storage.

Secondary containment, sufficient to contain the entire capacity of the largest single container with freeboard for precipitation, exists at all aboveground storage tanks.

The solid waste uses service pickups. All service pickups are parked in shops at night. The shop floor drains are no discharge and have the ability to contain 110% of the largest tank on either pickup. A spill kit is available and required to accompany service pickups when they leave the shops.

C. Requirements for Animal Fats, Oils and Greases

The solid waste facility does not store animal fats, oils and greases, fish oils, or vegetable oils.
Pictures of miscellaneous tanks and oil storage at the solid waste facility (described in Attachment 1, Tables 1 and 2):
Spill kit marking throughout facility.
Table 1. Oil Product Storage – AST

<table>
<thead>
<tr>
<th>Figure 1 Map Location</th>
<th>Location and Description of Tank Contents</th>
<th>Major Type of failure</th>
<th>total quantity</th>
<th>dispensing rate</th>
<th>direction of spill flow</th>
<th>secondary containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Southwest corner of MRF</td>
<td>Overfill or rupture</td>
<td>500 gallons</td>
<td>6 gpm</td>
<td>North to storm drain</td>
<td>9’ x 12’ x 1.5’ = 1211 gals discharge pipe is securely capped sight gauge and sign</td>
</tr>
<tr>
<td>B</td>
<td>Hydraulic room MRF - Dano drums</td>
<td>Line rupture</td>
<td>2400 gallons</td>
<td>Recirculates through system 120 gpm/pump</td>
<td>Reservoir contained in MRF Metal and rubber lines on outside with storm drain to west</td>
<td>24’x24’ room with socks around the base of overhead and walk through doors and plugged drains 125 gallon safety shutoff</td>
</tr>
<tr>
<td>C</td>
<td>West landfill shop</td>
<td>Water only:</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Water only for dust control and compost</td>
<td>2500 - yellow truck 1000 - firetruck</td>
<td></td>
<td></td>
<td></td>
<td>Building with concrete floor and no discharge sump Painted metal secondary containment 3’ x 3’ x 6’ = 390 gals</td>
</tr>
<tr>
<td>C</td>
<td>West shop landfill</td>
<td>Rupture or overfill</td>
<td>250 gallons</td>
<td>1 gallon/8 hours</td>
<td>Shop floor sump</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Quantity/Type</td>
<td>Volume (gallons)</td>
<td>Method/Action</td>
<td>Notes/Instructions</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>West shop landfill - two on-site service trucks night time storage</td>
<td>Overfill or rupture</td>
<td>75 gallons gas</td>
<td>2 gpm with electric pump engaged</td>
<td>Building with concrete floor and 0" discharge sump - spill kit available on each truck for all mobile activities</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Street shop storage yard - Permanently Closed Tank Storage Area</td>
<td>Not in use</td>
<td>Number and size of tanks varies - all are out of service</td>
<td>NA</td>
<td>Empty - marked "permanently closed" with closure date</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Yard waste composting Top road Fire department training tank</td>
<td>Not in use</td>
<td>10,000 gallons</td>
<td>NA</td>
<td>Empty - marked "permanently closed" 10/03</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Northwest corner outside operations shack - #2 Diesel dyed</td>
<td>Rupture or overfill</td>
<td>4,000 gallons</td>
<td>10 gpm</td>
<td>Concrete containment structure 35' x 13' x 2.5' = 8,508 gallons discharge is securely capped sight gauge and sign</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>East shop landfill - Water tank for water supply to grinder spray bar</td>
<td>Water only</td>
<td>500 gallons</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Hydraulic tank for beler MRF in southwest corner of MRF</td>
<td>Line rupture, tank rupture or overfill</td>
<td>450 gallons</td>
<td>Recirculated through system</td>
<td>Reservoir contained in MRF - Spill kit located in room</td>
<td></td>
</tr>
</tbody>
</table>

23
Table 2

Oil Product Storage Drums

<table>
<thead>
<tr>
<th>Figure 1 Map Location</th>
<th>Location Description</th>
<th>Type of Oil Product</th>
<th>Number of Drums (55 gallon)</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>MRF hydraulic room</td>
<td>Hydraulic fluid</td>
<td>4</td>
<td>24'x24' room with socks around the base of overhead and walk through doors and plugged drains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grease</td>
<td>2</td>
<td>Empty blue plastic available for spill response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-grade engine oil</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty blue plastic</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>West shop landfill inside</td>
<td>Motor oil</td>
<td>9</td>
<td>Eight barrels on rack - Metal secondary containment - 11'long x 3.5' wide x 0.25' deep = 72 gallons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydraulic fluid</td>
<td>5</td>
<td>Spill Kit is readily available building with concrete floor and central "0" discharge floor sump</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50/50 antifreeze</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>MRF shop</td>
<td>Waste Oil</td>
<td>1</td>
<td>Spill kit readily available in shop Totally enclosed building with floor drain to sanitary sewer</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>Substance</td>
<td>Quantity</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>H</td>
<td>East shop - inside</td>
<td>Waste oil</td>
<td>0 to 45</td>
<td>Totally enclosed in building with trough floor drain to "0" discharge sump in NW corner.</td>
</tr>
<tr>
<td></td>
<td>waste oil storage for</td>
<td></td>
<td></td>
<td>Numerous bags of floor dry or oil absorbent are readily available.</td>
</tr>
<tr>
<td></td>
<td>heaters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>South shop</td>
<td>Waste oil</td>
<td>1</td>
<td>Eight barrels on rack. Painted metal secondary containment - 9' long x 3.3' wide x 0.3' deep = 66 gallons.</td>
</tr>
<tr>
<td></td>
<td>Hydraulic fluid</td>
<td></td>
<td>2</td>
<td>Spill Kit and bags of floor dry are readily available for absorbing spills. Inside building with concrete floor and floor drain through sand interceptor to sanitary sewer.</td>
</tr>
<tr>
<td></td>
<td>Multi-grade oil</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Operations shack outside</td>
<td>Antifreeze</td>
<td>1</td>
<td>No secondary containment.</td>
</tr>
<tr>
<td></td>
<td>southeast end</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Operations shack inside</td>
<td>Multi-grade</td>
<td>5</td>
<td>Painted metal secondary containment - 0.5' deep x 4' wide x 9' long = 134 gals.</td>
</tr>
<tr>
<td></td>
<td>oil room</td>
<td>oil</td>
<td></td>
<td>Two bags of floor dry readily available near storage.</td>
</tr>
</tbody>
</table>

Notes:
1. Major failure for all drummed product includes overfilling, tipping or dumping, and rupturing during transfer.
2. Conversions from cubic feet to gallons: cubic feet x 7.48 gallons/cubic foot = gallons
STREET DEPARTMENT FACILITY

Spill Prevention, Control and Countermeasures Plan

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Approval and Resource Commitment</td>
<td>2</td>
</tr>
<tr>
<td>Professional Engineer Certification</td>
<td>2</td>
</tr>
<tr>
<td>General Facility Information</td>
<td>3</td>
</tr>
<tr>
<td>- legal and physical location</td>
<td></td>
</tr>
<tr>
<td>- facility contact information</td>
<td></td>
</tr>
<tr>
<td>Facility Conformance with 40 CFR Part 112.7</td>
<td>3</td>
</tr>
<tr>
<td>- map locations and facility descriptions</td>
<td></td>
</tr>
<tr>
<td>Spills and Discharges</td>
<td>6</td>
</tr>
<tr>
<td>Inspections, Tests and Records</td>
<td>7</td>
</tr>
<tr>
<td>- repair documentation</td>
<td></td>
</tr>
<tr>
<td>Personnel Training and Discharge Prevention Procedures</td>
<td>7</td>
</tr>
<tr>
<td>Security</td>
<td>8</td>
</tr>
<tr>
<td>Subpart B Compliance</td>
<td>8</td>
</tr>
<tr>
<td>Subpart C Compliance</td>
<td>8</td>
</tr>
<tr>
<td>Pictures – Street Shop Tanks</td>
<td>9</td>
</tr>
</tbody>
</table>

Attachments

1 Figure 1 – Street Shop Aerial Plan Map
 Figure 2 – Topographic Contour Map – Street Shop
2 Spill Reporting Guide and Form
3 Drain Form
4 Monthly Aboveground Tank Inspection Form
5 Record of SPCC Repair
6 Spill Prevention Training Guideline
7 Regulations 40 CFR 112 and Uniform Fire Code 7901&7902 (selected sections)
8 Substantial Harm Criteria and Certification
MANAGEMENT APPROVAL

This Spill Prevention Control and Countermeasures (SPCC) Plan for Rapid City Street Department, 605 Steele Avenue, Rapid City, SD 57701 will be implemented as herein described. This Plan has the full approval of management at a level of authority to commit the necessary resources to fully implement the Plan.

Compliance with 40 CFR Part 112 does not in any way relieve the owner or operator of an onshore or offshore facility from compliance with other Federal, State or Local Laws.

Signature: ____________________________

Name: ____________________________

Title: ____________________________

Date: ____________________________

CERTIFICATION

I hereby certify that I have examined the facility, and being familiar with the provisions of 40 CFR Part 112, attest that this SPCC Plan for Rapid City Street Department, 605 Steele Avenue, Rapid City, SD 57701 has been prepared in accordance with good engineering practices. I attest that procedures for required inspection and testing have been established in this Plan and are adequate for this facility.

Printed Name of Registered Professional Engineer

Signature of Registered Professional Engineer

Date: _______________ Registration No. ____________________ State: _______________
SPILL PREVENTION CONTROL AND COUNTERMEASURES PLAN

General Facility Information

Name of Facility: City of Rapid City Street Department

Type of Facility: Street Equipment Maintenance and Storage Area

Location of Facility: 605 Steele Avenue, Rapid City, SD 57701

Legal Description: NW ¼, Section 6, R8E, T1N

Latitude and Longitude: 44° 5'lat, 103° 12.5' long

Name and Address of Owner:

City of Rapid City
300 6th Street
Rapid City, SD 57701

Name, Address and Telephone of Operator:

Street Department
605 Steele Avenue
Rapid City, SD 57701

Telephone: (605) 394-4152

Designated person accountable for oil spill prevention at the facility:

Don Brumbaugh
Superintendent

Telephone: (605) 394-4152

A. Facility Conformance with 40 CFR Part 112.7

1. This is the SPCC plan for the City Street Department. This plan is based on the amended regulations dated July 17, 2002, and follows the alphabetical layout as found in 40 CFR Part 112.7. The following text discusses the facility conformance with these regulations.

2. This plan complies with all applicable requirements listed in this part for an onshore facility. The Rapid City Street Department stores only oil products for heat generation and fleet maintenance activities.
4. The Rapid City Street Department has no on-site fueling tanks. All equipment and fleet fueling is done at Phillips 66 under a fleet fueling contract. Waste oil is stored for heating and new oil is stored for fleet maintenance. Waste oil heaters are located in three facility shops. Each has a 250 gallon tank. The street department has no underground storage and an above ground storage capacity of 9,350 gallons of oil products. All above ground storage (AST) sites have adequate spill control and counter-measures in place to contain or cleanup a spill prior to contamination of navigable waters.

Attachment 1 contains facility maps and corresponding tables. Figure 1 is the Street Department Aerial Photo. This photo shows the entire facility and all oil storage locations owned and operated by Rapid City Street Department. Figure 2 is a topographic contour map. It shows elevation contours for the Street Department and provides a broader look at regional flow directions. Features on Tables 1&2 are labeled and located on Figure 1. Each letter designates an oil product storage site. Tables 1 and 2 list the letters and give more information about each storage site. Each map location is discussed in more detail in the following paragraphs.

Map location A, Figure 1 is the equipment maintenance shop. The oil product storage in this shop is for preventative maintenance of city owned vehicles and equipment, and heating. The southwest corner of the shop has a secondary containment with about 265 gallons capacity (dimensions 4.25’ wide x 1’ deep x 8.33 long = 35.42 cuft x 7.48 gal/cuft = 264.9 gallons). This location generally stores 5 to 6-55 gallon drums of engine oil and transmission fluid and 2-55 gallon drums of antifreeze.

There is a new oil storage rack in the northwest corner of the shop next to a waste oil heater tank. The storage rack is about 12 feet high and holds 7-75 gallon storage tanks. Five of these tanks contain hydraulic fluid, new oil or transmission fluid; one contains solvent and the other antifreeze. All tanks on the rack are filled from a bulk distribution truck or transferred from 55 gallon drums. This storage rack has lower valves for container filling and dispensing nozzles for direct filling. A secondary containment pan is located beneath the valve outlets. Any spills or leaks, outside the secondary containment, are contained and collected with floor dry. A metal secondary containment structure encloses the bottom of the rack. This secondary containment is a minimum of 2.75’ wide x 9.2’ long x 0.5’ deep = 12.65 cuft x 7.48 gal/cuft = 94.62 gallons. This capacity is sufficient to contain a minimum of 110% of the largest container content (75 gallons) on this storage rack. Oil which accumulates in this secondary containment is pumped out and disposed of with the waste oil unless contaminated with solvent. If contaminated with solvent, this oil will be disposed of as a hazardous material or in accordance with solvent disposal guidelines. In addition to this containment, the shop floor drains to an oil water separator system before discharge to the sanitary sewer. The shop is totally enclosed with a roof, concrete floor and central longitudinal trough style floor drain.

A waste oil heating tank is located in the northwest corner of the shop. It has a 250 gallon capacity. An open top secondary containment exists around the outside of this tank. The dimensions of this secondary containment are 3’ wide x 3’ deep x 6’ long = 54 cuft x 7.48 gal/cuft = 403.92 gallons. It is sized to contain a minimum of 110% of the tank contents.

A 55-gallon drum on a barrel dolly is used to transport oil within the shop from the catch pans to the waste oil heater or storage. Floor dry and a spill kit are readily available in the shop for any spills resulting from this temporary waste oil transfer barrel.

Map location B, Figure 1 is the street sweeper shop just to the west of the truck wash and maintenance shop. The oil product storage in this shop consists of one waste oil heating tank. It has a 250 gallon capacity. An open top secondary containment exists around the outside of this tank. The dimensions of this secondary containment are 3’ wide x 3’ deep x 6’ long = 54 cuft x 7.48 gal/cuft = 403.92 gallons. It is sized to contain a minimum of 110% of the tank contents.
Map location C, Figure 1 is partially paved equipment storage lot on the north side of the maintenance shop. This area provides overnight or long term parking. Flow from this area is to the east northeast. Adequate lighting and spill kits are available in this area to identify and contain a discharge from an oil leak or fuel tank failure. This area may also be used for parking and storage of any oil distributor truck owned by the street department. The capacity of these oil distributor trucks range from 200 to 2000 gallons. The street shop will utilize engineered containment for distributor trucks if parked in this area overnight or for temporary storage.

Map location D, Figure 1 is the waste oil storage tank outside the north wall of the maintenance shop. It is a 5000 gallon, painted, double wall (meets secondary containment requirement), UL 142 listed steel, aboveground skid tank, with necessary atmospheric venting and emergency vents for primary and secondary compartments. It is located on a concrete slab. The tank is equipped with an overfill sensing tank gauge. This sensor is connected to a visual alarm located inside of the building adjacent to the fill pipe connection.

Waste oil is delivered in a portable tank from outlying operations. Oil is transferred via a hose and pump into the tank. A spill kit is readily available by the tank to clean up any spills from transferring. Most transfers will occur inside the shop building.

The above ground piping at this facility is located behind this tank between the tank and the north shop wall. Piping is minimal. Therefore, allowances for consideration of expansion and contraction are not warranted. All aboveground piping is either painted or coated to minimize corrosion. The chance of damage to this piping by vehicles is minimal and no warning sign is warranted.

Top hatches to this tank are inside the fenced area. Hatches are padlocked when not open for filling. This tank has no emergency shutoff to the fill or discharge piping. Light poles and outside building lights are sufficient to discover discharges occurring during hours of darkness and to detour vandalism.

A method to prevent vehicles from departing before complete disconnection of flexible or fixed oil transfer lines is presently in place. A yellow caution sign is installed in a highly visible location to a transfer driver. This sign reads:

WARNING! Before departure
- Disconnect all transfer lines
- Check for leakage near tank drains and outlets

Map Location E, Figure 1 is the eastern most storage building. The oil product storage in this shop consists of one waste oil heating tank. It has a 250 gallon capacity. An open top secondary containment exists around the outside of this tank. The dimensions of this secondary containment are 3’ wide x 3’ deep x 6’ long = 54 cuft x 7.48 gal/cuft = 403.92 gallons. It is sized to contain 110% of the tank contents. This shop may also house one or more distributor trucks with 200 to 350 gallons capacity. The floor drain in this shop is connected to an oil water separator that drains to the sanitary sewer. When oil transfer tanks have oil product in their tanks and are parked in this building, the floor drain outlet is plugged and the floor and drain act as secondary containment. The floor drain has about 393 gallons of holding capacity based on an average depth of 0.875’x 1’ wide x 60’ long = 52.5 cuft x 7.48 gal/cuft = 392.7 gallons.

This building is locked during all non-operating hours. It is located within a chain link fenced area with a locking gate for additional security.
Map location F, Figure 1 is the sweeper cleanout station. This station is 2’ deep x 25’ long x 14.5’ wide = 725cuf x 7.48 gal/cuft = 5423 gallons. It may be used as a temporary secondary containment for any one of the mobile distributor units which range in capacity from 200 to 2000 gallons. When this occurs the outlet from this cleanout is plugged to prevent discharge to the sanitary sewer. Water discharged from this temporary containment area discharges directly to the sanitary sewer after passing through a sand interceptor. A visual inspection for sheen will occur before unplugging the outlet after any time this location is used as secondary containment. Booms will be used to skim and collect any sheen prior to sanitary discharge.

This station is located within the fenced area with the eastern most storage shed. It is well lit to discover vandalism and leakage.

Map location G, Figure 1 is the equipment and truck parking area on the south side of the maintenance shop. This lot is paved and flow from this area is east to the paved street. This is an overnight and long term parking area. Lighting and a spill kit is available in this area to prevent the discharge of releases from a fuel tank failure or oil leak. The motor grader has the largest fuel tank (90 gallons) parked in this area.

4. Spills and Discharges:

At the time of a spill, the person reporting the spill must complete the form in Attachment 2.

Waste oil heater tanks and new oil product storage in buildings: A spill kit or adequate quantities of floor dry are located in each shop. This absorbent material is available for cleanup and containment of minor spills. In the event of a large spill within the secondary containment, recovered product will be placed back into competent waste oil storage containers or absorbed in absorbent material. Large spills outside of the secondary containment such as from a ruptured portable storage tank, unattended transfer line or leaking distribution nozzle, will be contained by the shop floor and/or shop floor drain system. The Rapid City Fire Department will respond in addition to the Rapid City Hazmat team if necessary. Equipment and personnel are readily available on-site to assist. Any absorbents contaminated during a spill of fuel or oil product can be disposed of at the Rapid City Landfill after required testing and analysis indicate the waste is non-hazardous and disposal is approved by the facility operator. Refer to Attachment 2 for spill reporting guide.

55-gallon drums and portable waste oil transfer tank: Secondary containment sufficient to contain a spill from the largest storage tank exists for all waste oil storage. In the event of a large spill within the secondary containment, recovered product will be placed back into competent waste oil storage containers or absorbed in absorbent material. In the event of a spill, floor dry or other oil absorbent material will be applied immediately to contain the spill at the source. Equipment and personnel are readily available on-site to assist. Any absorbents contaminated during a spill of fuel or oil product can be disposed of at the Rapid City Landfill after required testing and analysis indicate the waste is non-hazardous and disposal is approved by the facility operator. Refer to Attachment 2 for spill reporting guide.

Distributor trucks: The distributor trucks used by the Street Department are regulated by DOT when mobile. Any time they are parked, they are covered by this spill prevention plan. Secondary containment exists at three locations in the street shop facility for temporary or long term parking. In the event of a spill within one of these secondary containments, recovered product will be absorbed by booms or in absorbent material. Equipment and personnel are readily available on-site to assist. Any absorbents contaminated during a spill of fuel or oil product can be disposed of at the Rapid City Landfill after required testing and
analysis indicate the waste is non-hazardous and disposal is approved by the facility operator. Refer to Attachment 2 for spill reporting guide.

If a discharge should occur at the facility, the spill will be documented, reported and recorded using the Spill Reporting Form contained in Attachment 2. After completion of the form, it will be retained in Attachment 2 of this SPCC plan and forwarded to the appropriate state and/or Federal agencies listed in Attachment 2, if the spill is a reportable quantity. See Attachment 2 for all spill reporting contacts and a complete definition of a reportable quantity.

If the Regional Administrator requires a plan amendment after review of the submitted information, refer to Section 112.4 (d) for a description of notification procedures, timeframes for amendment, and the appeal process. See Attachment 7 for a copy of the regulations.

5. Refer to number 4 above for spill related information.

Inspections, tests and records are addressed above with the information given for the map locations. With adoption and implementation of this plan, the facility will conduct monthly tank inspections using the form contained in Attachment 4. Upon completion of the inspection, the completed form will be placed back in Attachment 4 of this SPCC Plan.

If, during an inspection, it is discovered that a repair of the aboveground tanks or related equipment is required, the appropriate repair will be done. Upon completion of material repairs, the tank will be tested for leaks, by an appropriate means, prior to refilling with oil product. All repairs will be documented using the form contained in Attachment 5. Completed forms will be inserted back in Attachment 5 of this SPCC Plan.

Personnel training and discharge prevention procedures will be taught as per the regulations:

1. Oil handling personnel will be properly instructed in the following:
 a. Operation and maintenance of equipment to prevent oil discharges,
 b. Spill response and reporting,
 c. Applicable pollution control laws, rules and regulations,
 d. General facility operations, and
 e. The contents of the SPCC plan.

 To date the facility has not conducted personnel training concerning the above. With implementation of this SPCC Plan, the facility will begin conducting and documenting training in accordance with the guidelines contained in Attachment 6.

3. Prevention briefings for the operating personnel will be scheduled and conducted annually to assure understanding of this SPCC Plan.

The facility will conduct a formal employee-briefing program. Upon adoption of this SPCC Plan, in accordance with the guidelines contained in Attachment 6, this facility will also conduct discharge prevention briefings for oil handling personnel.
Security is provided at all oil product storage areas.

A perimeter fence with controlled access gates, limits access to the waste oil storage and distributor trucks. New oil storage and waste oil heater tanks are located within locked buildings within fenced areas during non-work hours. Tank valves are padlocked to prevent discharge without adequate forethought. Top hatches are also padlocked to prevent contamination or access by vandals. During work hours there are personnel around the area, and gates and shop doors are open. All valves or starter controls for oil handling within buildings are located within a secure locked area that can only be accessed by authorized personnel. The facility has adequate lighting to allow for the discovery of spills during hours of darkness and for the prevention of spills occurring by acts of vandalism.

The maintenance facility that contains the usable oil product and waste oil storage area is within a well lit fenced area that limits entrance during non-work hours to authorized personnel. Each building, storing oil product, is also locked to prevent unauthorized access.

This facility does not contain a tank car and tank truck loading/unloading rack.

Repairs will made and documented as per the inspection, tests, and records section above.

B. Requirements for Onshore, Non-production Facilities Storing Petroleum and Non-Petroleum Oils

The Street Department uses only containers compatible with the material stored and conditions of storage.

Secondary containment, sufficient to contain the entire capacity of the largest single container with freeboard for precipitation, exists at all aboveground storage tanks.

The Street Department uses portable waste oil transfer tanks. All portable storage tanks and road oil distributor tanks are parked in an area capable of containing 2200 gallons of oil product. A spill kit is available and required to accompany portable waste oil tanks when they leave this containment. Distributor trucks also have a spill kit available to contain spills during mobile use.

C. Requirements for Animal Fats and Oils and Greases

The Street Department does not store animal fats, oils and greases, fish oils, or vegetable oils.
Pictures of oil storage and secondary containment features at the Street Department.

Map location A: SW corner of shop

Map location A:
AST rack and waste oil
Heater tank - yellow is
Secondary containment

Overfill alarm
in shop by fill spout for 5000
gallon tank - north wall

Map location A:
Spill kit for mobile operations

Map location B:
Waste oil heater tank

Map location C:
5000 gallon double walled
Waste oil storage tank

Map location C:
Portable waste oil transfer tanks

Map location E:
Road oil distributor truck

Map location E:
Waste oil heater tank

Map location E:
East shop floor drain

Map location F:
Sweeper cleanout -
temporary containment
Table 1. Oil Product Storage –AST

<table>
<thead>
<tr>
<th>FIGURE 1 MAP LOCATION</th>
<th>LOCATION AND DESCRIPTION OF TANK CONTENTS</th>
<th>MAJOR TYPE OF FAILURE</th>
<th>TOTAL QUANTITY</th>
<th>DISPENSING RATE</th>
<th>DIRECTION OF SPILL FLOW</th>
<th>SECONDARY CONTAINMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Maintenance Shop AST rack, Engine oil, hydraulic fluid, transmission fluid, solvent and antifreeze</td>
<td>Left unattended while filling, tank rupture, open distributor valve</td>
<td>3-75 gallon engine oil 2-75 gallon hydr. **trans 1-75 gallon solvent 1-75 gallon antifreeze</td>
<td>2 gallons/minute</td>
<td>To shop floor drain</td>
<td>Yes, painted metal Minimum 2.75’ wide x 9.2’ long x 0.5’ deep = 12.65 cuft x 7.48 gal/cuft = 94.62 gallons</td>
</tr>
<tr>
<td>A</td>
<td>Maintenance Shop Waste oil heater tank</td>
<td>Left unattended while filling or tank rupture</td>
<td>250 gallons waste oil painted steel</td>
<td>1 gallon/8 hours</td>
<td>To shop floor drain</td>
<td>Yes, painted metal minimum 3’ wide x 2.9’ deep x 6’ long = 52.125 cuft x 7.48 gal/cuft = 390 gallons</td>
</tr>
<tr>
<td>B</td>
<td>Sweeper shed Waste oil heater tank</td>
<td>Left unattended while filling or tank rupture</td>
<td>250 gallons waste oil painted steel</td>
<td>1 gallon/8 hours</td>
<td>Contained in building with concrete floor</td>
<td>Yes, painted metal minimum 3’ wide x 3’ deep x 6’ long = 54 cuft x 7.48 gal/cuft = 403.92 gallons</td>
</tr>
<tr>
<td>C</td>
<td>Parking lot on north side of maintenance shop, Three portable waste oil transfer tanks on one trailer, road oil distributor trucks/trailer</td>
<td>Left transferring from, tank rupture, vandalism</td>
<td>5000 gallon waste oil double wall painted steel tank 1-2000 gallon distributor 1-200 gallon distributor 2-200 gallon yellow steel painted tanks and</td>
<td>Based on transfer pump capacity</td>
<td>Northeast, if overflows</td>
<td>Double wall tank, UL 142 listed steel, aboveground skid tank equipped with a gauge for overfill sensing and visual alarm Spill kit is readily available</td>
</tr>
<tr>
<td>Location</td>
<td>Description</td>
<td>Quantity</td>
<td>Volume Details</td>
<td>Containment Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>East shop by</td>
<td>250 gallons waste oil painted steel</td>
<td>1 gallon/8 hours</td>
<td>Yes, painted metal minimum 3’ wide x 3’ deep x 6’ long = 54 cuft x 7.48 gal/cuft = 403.92 gallons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sweeper cleanout</td>
<td>250 gallons road oil or 2000 gallon road oil listed in F below</td>
<td>5 gallons/minute (bottom valve)</td>
<td>To shop floor drain to sanitary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waste oil heater tank, road oil distributor trucks/trailer</td>
<td></td>
<td></td>
<td>Yes, floor drain trough and contained in building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Sweeper cleanout station</td>
<td>2000 gallons road oil truck tank</td>
<td>5 gallons/minute (bottom valve)</td>
<td>Contained in cleanout station with outlet to sanitary plugged</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Road oil distributor truck</td>
<td></td>
<td></td>
<td>Concrete 2’x25’x14.5’ = 725cuft x 7.48 gal/cuft = 5423 gallons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sweeper cleanout station for temporary containment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>South side of maintenance shop</td>
<td>90 gallons</td>
<td>variable</td>
<td>Northeast</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment storage and parking</td>
<td></td>
<td></td>
<td>Spill kits and lighting in equipment storage areas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2

Oil Product Storage Drums

<table>
<thead>
<tr>
<th>Figure 1 Map Location</th>
<th>Location Description</th>
<th>Type of Oil Product</th>
<th>number of drums (55 gallon)</th>
<th>Secondary containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>MRF hydraulic room</td>
<td>Hydraulic fluid</td>
<td>4</td>
<td>24’x24’ room with socks around the base of overhead and walk through doors and plugged drains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grease</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-grade engine oil</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty blue plastic</td>
<td>4</td>
<td>Empty blue plastic available for spill response</td>
</tr>
<tr>
<td>C</td>
<td>West shop landfill inside</td>
<td>Motor oil</td>
<td>9</td>
<td>Eight barrels on rack - Metal secondary containment - 11’long x 3.5’ wide x 0.25’ deep = 72 gallons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydraulic fluid</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50/50 antifreeze</td>
<td>2</td>
<td>Spill Kit is readily available building with concrete floor and central "0" discharge floor sump</td>
</tr>
<tr>
<td>G</td>
<td>MRF shop</td>
<td>Waste Oil</td>
<td>1</td>
<td>Spill kit readily available in shop Totally enclosed building with floor drain to sanitary sewer</td>
</tr>
<tr>
<td>H</td>
<td>East shop - inside waste oil storage for heaters</td>
<td>Waste Oil</td>
<td>0 to 45</td>
<td>Totally enclosed in building with trough floor drain to "0" discharge sump in NW corner Numerous bags of floor dry or oil</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>Absorbent Material</td>
<td>Quantity</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>I</td>
<td>South shop</td>
<td>Waste oil</td>
<td>1</td>
<td>Eight barrels on rack - Painted metal secondary containment - 9' long x 3.3' wide x 0.3' deep = 66 gallons Spill Kit and bags of floor dry are readily available for absorbing spills - inside building with concrete floor and floor drain through sand interceptor to sanitary sewer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydraulic fluid</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-grade oil</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Operations shack outside southeast end</td>
<td>Antifreeze</td>
<td>1</td>
<td>No secondary containment</td>
</tr>
<tr>
<td>J</td>
<td>Operations shack inside oil room</td>
<td>Multi-grade oil</td>
<td>5</td>
<td>Painted metal secondary containment - 0.5' deep x 4' wide x 9' long = 134 gals Two bags of floor dry readily available near storage</td>
</tr>
</tbody>
</table>

Notes:
1. Major failure for all drummed product includes overfilling, tipping or dumping, and rupturing during transfer.
2. Conversions from cubic feet to gallons: cubic feet x 7.48 gallons/cubic foot = gallons
WATER RECLAMATION FACILITY

Spill Prevention, Control and Countermeasures Plan

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Approval and Resource Commitment</td>
<td>2</td>
</tr>
<tr>
<td>Professional Engineer Certification</td>
<td>2</td>
</tr>
<tr>
<td>General Facility Information</td>
<td>3</td>
</tr>
<tr>
<td>- legal and physical location</td>
<td></td>
</tr>
<tr>
<td>- facility contact information</td>
<td></td>
</tr>
<tr>
<td>Facility Conformance with 40 CFR Part 112.7</td>
<td>3</td>
</tr>
<tr>
<td>- map locations and facility descriptions</td>
<td></td>
</tr>
<tr>
<td>Spills and Discharges</td>
<td>7</td>
</tr>
<tr>
<td>Inspections, Tests and Records</td>
<td>8</td>
</tr>
<tr>
<td>- repair documentation</td>
<td></td>
</tr>
<tr>
<td>- empty container storage</td>
<td></td>
</tr>
<tr>
<td>Personnel Training and Discharge Prevention Procedures</td>
<td>8</td>
</tr>
<tr>
<td>Security</td>
<td>9</td>
</tr>
<tr>
<td>Subpart B Compliance</td>
<td>9</td>
</tr>
<tr>
<td>Subpart C Compliance</td>
<td>9</td>
</tr>
<tr>
<td>Pictures – Water Reclamation­­ AST and Barrels</td>
<td>10</td>
</tr>
</tbody>
</table>

Attachments

1 Figure 1 – Water Reclamation Plan Map
2 Spill Reporting Guide and Form
3 Drain Form
4 Monthly Aboveground Tank Inspection Form
5 Record of SPCC Repair
6 Spill Prevention Training Guideline
7 Regulations 40 CFR 112
8 Substantial Harm Criteria and Certification

Table 1 - Oil Product Storage - AST
Table 2 - Oil Product Storage – Drums
MANAGEMENT APPROVAL

This Spill Prevention Control and Countermeasures (SPCC) Plan for Rapid City Water Reclamation Facility, 7903 South Side Drive, Rapid City, SD 57703 will be implemented as herein described. This Plan has the full approval of management at a level of authority to commit the necessary resources to fully implement the Plan.

Compliance with 40 CFR Part 112 does not in any way relieve the owner or operator of an onshore or offshore facility from compliance with other Federal, State or Local Laws.

Signature: ________________________________

Name: __________________________________

Title: ___________________________________

Date: ____________________________________

CERTIFICATION

I hereby certify that I have examined the facility, and being familiar with the provisions of 40 CFR Part 112, attest that this SPCC Plan for Rapid City Water Reclamation Facility, 7903 South Side Drive, Rapid City, SD 57703 has been prepared in accordance with good engineering practices. I attest that procedures for required inspection and testing have been established in this Plan and are adequate for this facility.

Printed Name of Registered Professional Engineer

Signature of Registered Professional Engineer

Date: _______________ Registration No. ___________________ State: ___________
SPILL PREVENTION CONTROL AND COUNTERMEASURES PLAN

General Facility Information

Name of Facility: City of Rapid City Water Reclamation Facility
Type of Facility: Municipal Sewage Treatment Plant
Location of Facility: 7903 South Side Drive, Rapid City, SD 57703
Legal Description: NE1/4, Section 25, R8E, T1N
Latitude and Longitude: 44° 1.5’lat, 103° 5’ long

Name and Address of Owner:

City of Rapid City
300 6th Street
Rapid City, SD 57701

Name, Address and Telephone of Operator:

Water Reclamation
7903 South Side Drive
Rapid City, SD 57703
Telephone: (605) 394-4174

Designated person accountable for oil spill prevention at the facility:

Dave Van Cleave
Water Reclamation Facilities Supervisor
Telephone: (605) 394-4174

A. Facility Conformance with 40 CFR Part 112.7

1. This is the SPCC plan for the City Water Reclamation Facility. This plan is based on the amended regulations dated July 17, 2002, and follows the alphabetical layout as found in 40 CFR Part 112.7. The following text discusses the facility conformance with these regulations.

2. This plan complies with all applicable requirements listed in this part for an onshore facility. The Rapid City Water Reclamation Facility stores only oil products for backup power generation and fleet maintenance activities.
City of Rapid City Stormwater Management Plan

5. Rapid City Water Reclamation Facility has on-site fueling tanks. Due to the relatively remote location, this facility has two above ground storage tanks (ASTs) for equipment and vehicle fueling. These ASTs include a 560 gallon painted metal single wall tank with secondary containment for gasoline and a 1000 gallon painted metal single wall tank with secondary containment for diesel fuel. Waste oil, from minor fleet maintenance, is stored in a shop until collected by a permitted waste oil hauler. The Water Reclamation Facility has no underground storage and a total above ground storage capacity of 9,005 gallons of oil products. All above ground storage (AST) sites have adequate spill control and counter-measures in place to contain or cleanup a spill prior to contamination of navigable waters.

Attachment 1 contains facility maps and corresponding tables. Figure 1 is the Water Reclamation Facility Plan Map. This map shows the entire facility including expansion and all oil storage locations owned and operated by Rapid City Water Reclamation Facility. Figure 2 is an aerial topographic contour map. It shows elevation contours for the Water Reclamation Facility and provides a broader look at regional flow directions. Features on Tables 1 & 2 are labeled and located on Figure 1. Each letter designates an oil product storage site. Tables 1 and 2 list the letters and give more information about each storage site. Each map location is discussed in more detail in the following paragraphs.

Map location A, Figure 1 is a new 500 kW CAT generator located on the northeast corner of the chlorine building. This generator is for backup power. It has a 600 gallon diesel fuel tank made of painted steel with engineered secondary containment. The tank and secondary containment is built into the base of the generator and attached via the mounting frame. Fueling of this generator occurs inside the east access doors of the generator in a recessed area within the generator mounting frame. A cam lock cap covers the fill spout with a float activated sight gauge directly below. Generator and fuel tank are completely enclosed and not subject to precipitation. Secondary containment has an audible alarm and LED indication of fuel basin rupture and leakage into secondary containment.

Fuel deliveries arrive in a 5500 gallon transport with the largest compartment of 2000 gallons. This generator does not have a loading/unloading rack. The transfer hose is pulled around to the east side of the generator. Fueling of this generator occurs inside the east access door in a recessed area using a transfer hose with an automatic shut off nozzle. Nozzle is attended at all times during the fueling due to the close proximity of a large storm water inlet. A large spill kit is located at the north end of this generator in the event of overfilling or transport leakage. The large storm water inlet is located approximately 20 feet from the north end of the generator.

There is no external piping associated with this fuel tank. There is no chance of damage to piping by vehicles. No warning signs are warranted.

The Water Reclamation Facility has various security features. The entire facility is surrounded by a six foot chain link fence with locking gates which are closed after hours. A local security company provides random checks of the facility after hours. Various site facilities are alarmed into the police department and the city Energy Plant. Personnel check the facility for two hours each day on the weekends. Lighting exists in the vicinity of this generator sufficient to discover a spill or leakage.

Map location B, Figure 1 is the diesel fuel tank on the east end of the Spencer Blower Building. This tank fuels the backup generator for the blower unit. It is a 1500 gallon white painted metal tank with engineered secondary containment and a top cover to eliminate precipitation accumulation in secondary containment. The tank is fueled from the top with a float activated sight gauge adjacent to the fill spout.

Fuel deliveries arrive in a 5500 gallon transport with the largest compartment of 2000 gallons. This generator does not have a loading/unloading rack. Fueling of this generator occurs on the south end of this tank using the transfer hose with an automatic shut off nozzle. Nozzle is attended at all times during fueling. A large
spill kit is located on the south side of this tank in case of overfilling or leakage from the transport. No storm drains are immediately adjacent to this tank. A spill could easily be localized within the paved area adjacent to the tank.

There is one external pipe associated with this fuel tank. It directly connects to the generator from the top of the tank. There is no vehicle or equipment hazard to the piping in this location. No piping warning signs are necessary.

The Water Reclamation Facility has various security features. The entire facility is surrounded by a six foot chain link fence with locking gates which are closed after hours. A local security company performs random checks of the facility after hours. Various site facilities are alarmed into the police department and the city Energy Plant. Personnel check the facility for two hours each day on the weekends. Lighting exists in the vicinity of this generator sufficient to discover a spill or leakage.

Map location C, Figure 1 is a diesel fuel powered generator on the south side of the trickling filters adjacent to the secondary clarifiers. This generator provides backup power for the west end of the reclamation facility. This 3600 gallon diesel fuel tank is in the base of the generator and is engineered with a double wall (referred to as rupture basin on tank schematic) and a leak detection system in the interstitial space. The tank is filled from the west end. The filling spout is located outside of the generator building, has a cam lock cap, and a sight gauge inside the west door on the top of the tank. A storm water inlet is located about 30 feet west of the fill spout immediately adjacent to fuel transport parking.

Fuel deliveries arrive in a 5500 gallon transport with the largest compartment of 2000 gallons. This generator does not have a loading/unloading rack. Fueling of this generator occurs on the west end of this tank using the transfer hose with an automatic shut off nozzle. Nozzle is attended at all times during fueling. A large spill kit is located on the west end of this generator adjacent to the fill spout in case of overfilling or leakage from the transport. The spill kit contains booms to prevent flow into the adjacent clarifiers, a pad to cover the storm drain inlet and absorbent for diking. A spill could easily be localized within the storm drain which dead ends on the east end of this generator in a grassy swale.

There is no external piping associated with this generator and fuel tank. It is all one enclosed unit. No piping warning signs are necessary.

The Water Reclamation Facility has various security features. The entire facility is surrounded by a six foot chain link fence with locking gates which are closed after hours. A local security company performs random checks of the facility after hours. Various site facilities are alarmed into the police department and the city Energy Plant. Personnel check the facility for two hours each day on the weekends. Lighting exists in the vicinity of this generator sufficient to discover a spill or leakage.

Map location D, Figure 1 is a new 500 kW CAT generator located on the southwest corner of the sludge hauling building. This generator is for backup power. It has a 600 gallon diesel fuel tank made of painted steel with engineered secondary containment. The tank and secondary containment is built into the base of the generator and attached via the mounting frame. Fueling of this generator occurs inside the east access doors of the generator in a recessed area within the generator mounting frame. A cam lock cap covers the fill spout with a float activated sight gauge directly below. Generator and fuel tank are completely enclosed and not subject to precipitation. Secondary containment has an audible alarm and LED indication of fuel basin rupture and leakage into secondary containment.

Fuel deliveries arrive in a 5500 gallon transport with the largest compartment of 2000 gallons. This generator does not have a loading/unloading rack. Fueling of this generator occurs inside the east access door in a recessed area using a transfer hose with an automatic shut off nozzle. There are no storm drains in the
immediate vicinity. The generator sits on a concrete slab. Flow in the event of a spill would be to the east/northeast. The nozzle is attended at all times during the fueling to prevent overfilling. A large spill kit is located at the north end of this generator in the event of overfilling or transport leakage.

There is no external piping associated with this fuel tank. There is no chance of damage to piping by vehicles. No warning signs are warranted.

The Water Reclamation Facility has various security features. The entire facility is surrounded by a six foot chain link fence with locking gates which are closed after hours. A local security company provides random checks of the facility after hours. Various site facilities are alarmed into the police department and the city Energy Plant. Personnel check the facility for two hours each day on the weekends. Lighting exists in the vicinity of this generator sufficient to discover a spill or leakage.

Map location E, Figure 1 is the bulk gasoline and diesel fuel storage tanks for on-site fueling of water reclamation vehicles and equipment. These two tanks are located on the northeast corner of the sludge hauling building. Both are constructed of painted metal and each has an open top painted metal secondary containment. The northermost tank has a capacity of 500 gallons and stores gasoline. The secondary containment is 1.75 feet deep by 6.05 feet wide by 8.1 feet long with a storage capacity of 634 total gallons. The southermost tank has a capacity of 1000 gallons and stores gasoline. The secondary containment is 2.5 feet deep by 7 feet wide by 9.05 feet long and has a storage capacity is 1185 gallons. The drain pipes from both containment structures are capped. Normal procedure is to allow rainwater that accumulates in the containment structure to evaporate. Should evaporation prove to be inadequate for removal of the water, the water will be removed by pumping after visual inspection by properly trained personnel. This inspection will ensure that the water does not have visible oil sheen. Discharge, to the natural surface water drainage, will only occur only after proper inspection and documentation of no oil sheen. Each drain event is documented using the form contained in Attachment 3 – Drain Form. Completed drain forms will be maintained in the same attachment to this plan.

Fuel is distributed through electric pumps. Each has a lever to turn the pump on and off and an automatic shutoff nozzle. Pump switches and nozzle cradles are located within the secondary containment.

Fuel deliveries arrive in a 5500 gallon transport with the largest compartment of 2000 gallons. Neither of these storage tanks has a loading/unloading rack. Fueling of each occurs with a transfer hose with an automatic shut off nozzle, through a padlocked top hatch. The nozzle is attended at all times during fueling. A large spill kit is located adjacent to these tanks in case of overfilling or leakage from the transport. Equipment and personnel are readily available with dirt and equipment to contain and cleanup a spill.

There is no external piping associated with these fuel tanks. There is no chance of damage to piping by vehicles. No warning signs are warranted.

The Water Reclamation Facility has various security features. The entire facility is surrounded by a six foot chain link fence with locking gates which are closed after hours. A local security company provides random checks of the facility after hours. Various site facilities are alarmed into the police department and the city Energy Plant. Personnel check the facility for two hours each day on the weekends. Lighting exists in the vicinity of this generator sufficient to discover a spill or leakage.

Map location F, Figure 1 is the maintenance shop. Nine 55-gallon barrels of oil are stored inside this shop on three horizontal barrel racks. All oil containing barrels are of painted steel. An inventory of these drums is included in Attachment 1, Table 2. The floor is concrete and drains to a floor grate and to the front end of the waste water treatment plant. A metal painted secondary containment pan exists beneath the barrel racks. This pan measures 18 feet long x 0.25 feet deep x 3.5 feet wide and is capable of containing 117.81 gallons.
Barrels are lifted into place on rack by a fork lift and barrel lifting device. Major failure for all drummed product includes tipping, dumping with open valve or bung, and rupturing during transfer. The distance between the rack and the floor drains is sufficient to use readily available floor dry type absorbent to stop and cleanup a spill before it reaches a floor drain.

The shop has outside lights and locked at night. A fence surrounds the entire water reclamation facility with locked access gates after work hours.

Map location G, Figure 1 is a new 750 kW CAT generator located on the southwest side of the new aeration basin blower building. This generator is for backup power. It has a 700 gallon diesel fuel tank made of painted steel with engineered secondary containment. The tank and secondary containment is built into the base of the generator and attached via the mounting frame. Fueling of this generator occurs inside the east access doors of the generator in a recessed area within the generator mounting frame. A cam lock cap covers the fill spout with a float activated sight gauge directly below. Generator and fuel tank are completely enclosed and not subject to precipitation. Secondary containment has an audible alarm and LED indication of fuel basin rupture and leakage into secondary containment.

Fuel deliveries arrive in a 5500 gallon transport with the largest compartment of 2000 gallons. This generator does not have a loading/unloading rack. The transfer hose is pulled around to the east side of the generator. Fueling of this generator occurs inside the east access door in a recessed area using a transfer hose with an automatic shut off nozzle. Nozzle is attended at all times during the fueling. A large spill kit is located by this generator in the event of overfilling or transport leakage. There is no external piping associated with this fuel tank.

There is no chance of damage to piping by vehicles. No warning signs are warranted.

The Water Reclamation Facility has various security features. The entire facility is surrounded by a six foot chain link fence with locking gates which are closed after hours. A local security company provides random checks of the facility after hours. Various site facilities are alarmed into the police department and the city Energy Plant. Personnel check the facility for two hours each day on the weekends. Lighting exists in the vicinity of this generator sufficient to discover a spill or leakage.

4. Spills and Discharges:

At the time of a spill, the person reporting the spill must complete the form in Attachment 2.

Backup Power Generators: A spill kit and/or adequate quantities of floor dry are located adjacent to each generator. This absorbent material is available for cleanup and containment of spills. In the event of a large spill within the secondary containment, recovered product will be placed back into competent waste oil storage containers or absorbed in absorbent material. Large spills outside of the secondary containment such as from a ruptured transfer hose, leaking transport or overfilling will be contained by quick and proper use of the spill kit. The fire department will respond in addition to Rapid City Hazmat team if necessary. Equipment and personnel are readily available on-site to assist. Any absorbents contaminated during a spill of fuel or oil product can be disposed of at the Rapid City Landfill after required testing, analysis indicating the waste is non-hazardous and approval of the facility operator. Refer to Attachment 2 for the spill reporting guide.
55-gallon drums: Secondary containment sufficient to contain a spill from the largest storage container exists for all oil storage within the shop. In the event of a large spill within the secondary containment, recovered product will be placed back into competent waste oil storage containers or absorbed in absorbent material. In the event of a spill, floor dry or other oil absorbent material will be applied immediately to contain the spill at the source. Equipment and personnel are readily available on-site to assist. Any soil or absorbent contaminated during a spill of fuel or oil product can be disposed of at the Rapid City Landfill after required testing, analysis indicating the waste is non-hazardous, and with approval of the facility operator. Refer to Attachment 2 for spill reporting guide.

If a discharge should occur at the facility, the spill will be documented, reported and recorded using the Spill Reporting Form contained in Attachment 2. After completion of the form, it will be retained in Attachment 2 of this SPCC plan and forwarded to the appropriate state and/or Federal agencies listed in Attachment 2, if the spill is a reportable quantity. See Attachment 2 for all spill reporting contacts and a complete definition of a reportable quantity. Refer to Attachment 7, Section 112.4(a), Page 4744, if you have a spill of 42 gallons or more for the second time in one year.

If the Regional Administrator requires a plan amendment after review of the submitted information, refer to Section 112.4 (d) for a description of notification procedures, timeframes for amendment, and the appeal process. See Attachment 7 for a copy of the regulations.

5. Refer to number 4 above for spill related information.

Inspections, tests and records are addressed above with the information given for the map locations. With adoption and implementation of this plan, the facility will conduct monthly tank inspections using the form contained in Attachment 4. Upon completion of the inspection, the completed form will be placed back in Attachment 4 of this SPCC Plan.

If, during an inspection, it is discovered that a repair of the aboveground tanks or related equipment is required, the appropriate repair will be done. Upon completion of material repairs, the tank will be tested for leaks, by an appropriate means, prior to refilling with oil product. All repairs will be documented using the form contained in Attachment 5. Completed forms will be inserted back in Attachment 5 of this SPCC Plan.

All empty 55-gallon or larger containers, capable of storing oil products, but which are not in service, will be marked with “permanently closed” and a closure date including the day, month and year.

Personnel training and discharge prevention procedures will be taught as per the regulations:

1. Oil handling personnel will be properly instructed in the following:

 a. Operation and maintenance of equipment to prevent oil discharges,

 b. Spill response and reporting,

 c. Applicable pollution control laws, rules and regulations,

 d. General facility operations, and

 e. The contents of the SPCC plan.
To date the facility has not conducted personnel training concerning the above. With implementation of this SPCC Plan, the facility will begin conducting and documenting training in accordance with the guidelines contained in Attachment 6.

4. Prevention briefings for the operating personnel are scheduled and conducted annually to assure understanding of this SPCC Plan.

The facility will conduct a formal employee-briefing program. Upon adoption of this SPCC Plan, in accordance with the guidelines contained in Attachment 6, this facility will also conduct discharge prevention briefings for oil handling personnel.

Security is provided at all oil product storage areas. A perimeter fence with controlled access gates, limits access to the generators, oil barrels, and fuel tanks. New oil storage is located within locked buildings within fenced areas during non-work hours. Generators have locking doors and fuel tanks have padlocked fill hatches to prevent unauthorized access. During work hours there are personnel around the area, and gates and shop doors are open. All valves or starter controls for oil handling within buildings are located within the fenced site accessible by authorized personnel. The facility has adequate lighting to allow for the discovery of spills during hours of darkness and for the prevention of spills that may occur by acts of vandalism.

The maintenance shop that contains the usable oil product is within a well lit fenced area that limits entrance during non-work hours to authorized personnel. The building storing oil product is locked to prevent unauthorized access during non-work hours.

This facility does not contain a tank car and tank truck loading/unloading rack.

Repairs will made and documented as per the inspection, tests, and records section above.

B. **Requirements for Onshore, Non-production Facilities Storing Petroleum and Non-Petroleum Oils**

The Water Reclamation Facility uses only containers compatible with the material stored and conditions of storage.

Secondary containment, sufficient to contain the entire capacity of the largest single container with freeboard for precipitation, exists at all aboveground storage tanks.

C. **Requirements for Animal Fats and Oils and Greases**

The water reclamation does not store animal fats, oils and greases, fish oils, or vegetable oils.
Pictures of Water Reclamation Facility oil storage.

A. Generator

B. Fuel tank for generator

C. Generator

D. Generator

E. Bulk Fuel Tanks

F. Maintenance oil storage

G. Generator

New Construction – installed 10/22/03
<table>
<thead>
<tr>
<th>Facility: Water Reclamation – City of Rapid City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>FIGURE 1 MAP LOCATION</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>G</td>
</tr>
</tbody>
</table>

Table 2

Oil Product Storage Drums

Rapid City Water Reclamation

<table>
<thead>
<tr>
<th>Figure 1 Map Location</th>
<th>Location Description</th>
<th>Type of Oil Product</th>
<th>number of drums (55 gallon)¹</th>
<th>Secondary containment</th>
</tr>
</thead>
</table>

50
<table>
<thead>
<tr>
<th></th>
<th>Maintenance shop east of digesters</th>
<th>Hydraulic Oil</th>
<th>Multi-grade oils and gear lubes</th>
<th>Antifreeze</th>
<th>2</th>
<th>9</th>
<th>2</th>
<th>Painted metal pans</th>
</tr>
</thead>
</table>

Notes:

1. Major failure for all drummed product includes overfilling, tipping or dumping, and rupturing during
RAPID CITY REGIONAL AIRPORT

Spill Prevention, Control and Countermeasures Plan

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Approval and Resource Commitment</td>
<td>2</td>
</tr>
<tr>
<td>Professional Engineer Certification</td>
<td>2</td>
</tr>
<tr>
<td>General Facility Information</td>
<td></td>
</tr>
<tr>
<td>-legal and physical location</td>
<td>3</td>
</tr>
<tr>
<td>-facility contact information</td>
<td></td>
</tr>
<tr>
<td>Facility Conformance with 40 CFR Part 112.7</td>
<td>3</td>
</tr>
<tr>
<td>-map locations and facility descriptions</td>
<td></td>
</tr>
<tr>
<td>Spills and Discharges</td>
<td>6</td>
</tr>
<tr>
<td>Inspections, Tests and Records</td>
<td>7</td>
</tr>
<tr>
<td>-repair documentation</td>
<td></td>
</tr>
<tr>
<td>Personnel Training and Discharge Prevention Procedures</td>
<td>7</td>
</tr>
<tr>
<td>Security</td>
<td>8</td>
</tr>
<tr>
<td>Subpart B Compliance</td>
<td>8</td>
</tr>
<tr>
<td>Subpart C Compliance</td>
<td>8</td>
</tr>
<tr>
<td>Pictures – Tank Farm</td>
<td>9</td>
</tr>
</tbody>
</table>

Attachments

1. Figure 1 - Terminal Area Plan Map
2. Figure 2 - AST Fuel Storage Area Map
3. Figure 3 - Topographic Contours –RCRA
4. Spill Reporting Guide and Form
5. Drain Form
6. Monthly Aboveground Tank Inspection Form
7. Record of SPCC Repair
8. Spill Prevention Training Guideline
9. Regulations 40 CFR 112
10. Substantial Harm Criteria and Certification

Table 1 - Oil Product Storage -UST/AST
Table 2 - Oil Product Storage -Drums
MANAGEMENT APPROVAL

This Spill Prevention Control and Countermeasures (SPCC) Plan for Rapid City Regional Airport, 4550 Terminal Road, Rapid City, SD 57701 will be implemented as herein described. This Plan has the full approval of management at a level of authority to commit the necessary resources to fully implement the Plan.

Compliance with 40 CFR Part 112 does not in any way relieve the owner or operator of an onshore or offshore facility from compliance with other Federal, State or Local Laws.

Signature: ____________________________

Name: __________________________________

Title: __________________________________

Date: _________________________________

CERTIFICATION

I hereby certify that I have examined the facility, and being familiar with the provisions of 40 CFR Part 112, attest that this SPCC Plan for Rapid City Regional Airport, 4550 Terminal Road, Rapid City, SD 57701 has been prepared in accordance with good engineering practices. I attest that procedures for required inspection and testing have been established in this Plan and are adequate for this facility.

Printed Name of Registered Professional Engineer

Signature of Registered Professional Engineer

Date: ____________________ Registration No. ___________________ State: ____________
SPILL PREVENTION CONTROL AND COUNTERMEASURES PLAN

General Facility Information

Name of Facility: Rapid City Regional Airport

Type of Facility: Regional Airport

Location of Facility: 4550 Terminal Road, Rapid City, SD 57701

Legal Description: Sections 8, 17, 20, 21, Township IN, Range 9E, Pennington County, South Dakota

Latitude and Longitude: 44°02' 35.91" lat, 103°03' 25.91" long

Name and Address of Owner:

City of Rapid City
300 6th Street
Rapid City, SD 57701

Name, Address and Telephone of Operator:

Rapid City Regional Airport
4550 Terminal Road
Rapid City, SD 57701
Telephone: (605) 394-4195

Designated person accountable for oil spill prevention at the facility:

David P. Lepine
Director of Certification/Maintenance
Telephone: (605) 394-4195

A. Facility Conformance with 40 CFR Part 112.7

1. The Rapid City Regional Airport completed an initial SPCC plan in 1998. This revised plan is based on the amended regulations dated July 17, 2002, and is reformatted to follow the alphabetical layout as found in 40 CFR Part 112.7. The following text discusses the facility conformance with these regulations.

2. This plan complies with all applicable requirements listed in this part for an onshore facility. The Rapid City Regional Airport stores only oil products for backup power generation, basic maintenance activities, and equipment fueling.

3. Rapid City Regional Airport owns their own fueling tanks for fleet and maintenance vehicles and has oil storage for light maintenance of fleet vehicles. Backup power generation units, for basic airport
operations, have dedicated tanks. Presently, the airport has an underground storage (UST) capacity of 26,000 gallons and an above ground storage capacity of 65,880 gallons of oil products. Underground storage of oil products meets current regulations at all sites except one. The underground tank at the Federal Building is a 3000-gallon tank that is currently in use for heating oil, installed in 1970. All other underground tanks are dedicated to backup power generation. All above ground storage (CAST) sites have adequate spill control and countermeasures in place to contain or cleanup a spill prior to contamination of navigable waters. A few modifications of present storage areas are necessary to bring the airport into full compliance with the revised SPCC regulations and underground storage tank regulations.

Attachment 1 contains facility maps and corresponding tables. Figure 1 is the Terminal Area Plan Map. This map shows the entire facility and all fuel storage locations owned and operated by Rapid City Regional Airport. Figure 2 is the AST Fuel Storage Area Map. This map is a more detailed layout of the 2-30,000 gallon tanks in the fuel storage area. Figure 3 is an aerial photo with elevation contours that provide a broader look at regional flow directions. Features on Tables 1&2 are labeled. Each letter designates an oil product storage site. Tables 1 and 2 list the letters and give more information about each storage site. Each map location is discussed in more detail in the following paragraphs.

Map locations A, B and C, Figure 1 are UST's that are exempt from the requirements of these regulations and this plan. It should be noted that the underground storage tank at the Federal Building might likely be pulled and replaced with an aboveground tank with engineered secondary containment. This tank removal will require the authorization of the Airport Board and is contingent upon future use and/or restoration of this building. Presently, the Spruce-Up South Dakota Program, ending in 2003, is a cost effective option for removal and disposal of this tank. This plan will be updated if an above ground storage tank replaces the existing underground tank.

Map location D, Figure 1 is the AST tank farm owned and operated by Rapid City Regional Airport. This bulk storage tank farm consists of two painted metal, 30,000-gallon AST tanks. The northernmost tank contains diesel and the southernmost contains unleaded gasoline. These tanks have a common secondary containment structure. This containment structure is concrete with a total capacity of 33,215 gallons. The drain-pipe from this containment structure is capped. Normal procedure is to allow rainwater that accumulates in the containment structure to evaporate. Should evaporation prove to be inadequate for removal of the water, the water will be removed by pumping after visual inspection by properly trained personnel. This inspection will ensure that the water does not have visible oil sheen. Discharge, to the natural surface water drainage, will occur only after proper inspection and documentation of no oil sheen. Each drain event is documented using the form contained in Attachment 3 - Drain Form. Completed drain forms will be maintained in the same attachment to this plan.

Fuel deliveries arrive in a 3000-gallon transport. A transfer hose transfers fuel. These tanks do not have a loading/unloading rack. The transfer hose is pulled up the steps to the top of the tank and discharged into the top hatch of the tank. Both tank hatches are located within the secondary containment designed to contain any overflow. Fuel is ordered as needed and is not delivered on a set schedule. The airport maintains a maximum fuel inventory of about 10,000 gallons in each tank. The Airport Director of Certification and Maintenance using the fuel level gauges on the top of each tank makes a weekly inventory. At the same time, he examines the secondary containment and tanks for signs of leakage. Attachment 4 of this plan contains a form to document these monthly AST inspections. Completed inspection forms are maintained in the same attachment to this plan.

The above ground piping at this facility is located at this bulk tank storage area (Figure 2) and is minimal. Therefore, allowances for consideration of expansion and contraction are not warranted. All aboveground piping is either painted or coated to minimize corrosion.
The majority of aboveground piping is either contained within the concrete secondary containment or the security fence bounding the bulk storage tank area. The chance of damage to this piping by vehicles is minimal. Therefore, no warning signs are warranted.

The tank farm has various security features. The outside access of the entire tank farm area is fenced with a card key controlled gate. The storage tanks and secondary containment are also within a six-foot chain link fence with a razor wire top. This fence has a padlocked access gate. Card key access pumps control the master flow valve. Top hatches to tanks are inside the fenced area. Hatches are securely fastened when not open for fueling. An emergency shut off is located on the light pole near the SW corner of the tank fence. The light pole provides adequate light to discover discharges occurring during hours of darkness and deter vandalism.

A method to prevent vehicles from departing before complete disconnection of flexible or fixed oil transfer lines is presently in place. A yellow caution sign is installed in a highly visible location to a delivery truck driver, adjacent to the two 30,000 gallon ASTs. This sign reads:

WARNING! Before departure

- Disconnect all transfer lines
- Check for leakage near truck drains and outlets

Map location E, Figure 1 is the old maintenance shop. Eleven 55-gallon drums of oil product are stored inside this shop on a horizontal barrel rack. All oil containing barrels are of painted steel construction. An inventory of these drums is included in Attachment 1, Table 2. This shop has a concrete floor with grated floor drains. Floor drains flow to an oil water separator and then to the airport wastewater lagoon.

Barrels are lifted into place on rack by a truck mounted hoist crane system. Major failure for all drummed product includes overfilling transfer containers, tipping or dumping with open valve or bung, and rupturing during transfer. The distance between the rack and the floor drains is sufficient to use readily available floor dry type absorbent to stop and cleanup a spill prior to it reaching a floor drain. This shop has outside lights and remains locked at all times. A fence surrounds the entire maintenance area with locked, gate access at all times.

Map location F, Figure 1 is the new maintenance shop. Five 55-gallon painted steel drums of oil product are stored inside this shop in an explosion proof room with grated floor over an engineered concrete lined secondary containment pit. An inventory of these drums is included in Attachment 1, Table 2. According to the Director of Certification and Maintenance, the pit capacity is 840 gallon drums. This allows for containment of up to 14-55 gallon drums. Oil products are pumped through hoses to a distribution point in the shop bay on the northwest end of the building. Distribution nozzles are located over a 55-gallon steel drip drum.

Barrels are transferred from delivery truck to the storage room through double outside doors. A barrel-lift hoist system is used for the transfer. Major failure for all drummed product includes overfilling transfer containers, tipping or dumping with open valve or bung, and rupturing during transfer.

It is possible if a barrel ruptured during transfer, outside the building, that product would flow southwest to the nearest storm drain. A spill kit containing booms and large storm drain pillows will be located just inside or outside these double doors to prevent discharge to the storm sewer.

The waste oil storage is also in this new shop storage room. The waste oil storage is 2-55 gallon drums. All transfers of waste oil into the drums will take place within the oil storage room over the secondary containment.
The grated storage area is checked during product deliveries. Large accumulations are pumped out and placed in waste oil drums and sources of the oil are sought out and repaired. Any time this secondary containment is drained, the form in Attachment 3 will be completed and a copy will be filed in Attachment 3.

Empty drums are either returned to the dealers or placed out of service. To place a drum out of service, it will be marked with paint or magic marker "Permanently Closed" and the date it was closed will be indicated on the drum. All drums taken out of service will be sent to the appropriate recycling facility in Rapid City after being triple rinsed and punctured.

Map location H, figure 1 is the backup generator for the maintenance shops. This is a 200-gallon double walled tank that has leak detection and is located inside a portable generator house. The tank is of painted steel construction. A likely source of a spill from this tank is overfilling while fueling. A small spill kit containing booms and pads will be located in this generator house to prevent migration of fuel from a tank rupture to storm sewer.

4. **Spills and Discharges:**

At the time of a spill, the person reporting the spill must complete the form in Attachment 2.

Large tanks at tank farm: A spill kit is located approximately five feet north of the pump island. This kit is available for cleanup and containment of minor spills. In the event of a large spill within the secondary containment, recovered product will be handled according to guidance from the State Department of Environment and Natural Resources. Large spills outside of the secondary containment such as from a ruptured transport or open line, will be contained in the depression area on the south side of the secondary containment. On-site fire department will respond in addition to Rapid City Hazmat team. Equipment and personnel are readily available on-site to assist. Any soil contaminated during a spill of fuel or oil product can be disposed of at the Rapid City Landfill after required testing and analysis indicating the waste is non-hazardous. Any contaminated booms or absorbents may be disposed of at the Rapid City Landfill with approval of facility operator. Refer to Attachment 2 for spill reporting guide.

55-gallon drums at new and old shops: A spill kit and secondary containment is located in the new shop oil storage room. Floor dry is readily available in the old shop. In the event of a spill, floor dry or other oil absorbent material will be applied immediately to contain the spill at the source. Equipment and personnel are readily available on-site to assist. Any soil contaminated during a spill of fuel or oil product can be disposed of at the Rapid City Landfill after required testing and analysis indicating the waste is non-hazardous. Any contaminated booms or absorbents may be disposed of at the Rapid City Landfill with approval of facility operator. Refer to Attachment 2 for spill reporting guide.

If a discharge should occur at the facility, the spill will be documented, reported and recorded using the Spill Reporting Form contained in Attachment 2. After completion of the form, it will be retained in Attachment 2 of this SPCC plan and forwarded to the appropriate state and/or Federal agencies listed below if the spill is a reportable quantity. See Attachment 2 for all spill reporting contacts and a complete definition of a reportable quantity.
If the Regional Administrator requires a plan amendment after review of the submitted information, refer to Section 112.4 (d) for a description of notification procedures, timeframes for amendment, and the appeal process. See Attachment 7 for a copy of the regulations.

5. Refer to number 4 above for spill related information.

Inspections, tests and records are addressed above with the information given for the map locations. With adoption and implementation of this revised plan, the facility will conduct monthly tank inspections using the form contained in Attachment 4. Upon completion of the inspection, the completed form will be placed back in Attachment 4 of this SPCC Plan.

If, during an inspection, it is discovered that a repair of the aboveground tanks or related equipment is required, the appropriate repair will be done. All repairs will be documented using the form contained in Attachment 5. Completed forms will be inserted back in Attachment 5 of this SPCC Plan.

Personnel training and discharge prevention procedures will be taught as per the regulations:

1. Oil handling personnel will be properly instructed in the following:

 a. Operation and maintenance of equipment to prevent oil discharges,

 b. Spill response and reporting,

 c. Applicable pollution control laws, rules and regulations,

 d. General facility operations, and

 e. The contents of the SPCC plan.

 To date the facility has conducted but not documented personnel training concerning the above. With implementation of this revised SPCC Plan, the facility will begin conducting and documenting training in accordance with the guidelines contained in Attachment 6.

5. Prevention briefings for the operating personnel are scheduled and conducted annually to assure understanding of this SPCC Plan.

The facility will conduct a formal employee-briefing program. Upon adoption of this revised SPCC Plan, in accordance with the guidelines contained in Attachment 6, this facility will also conduct discharge prevention briefings for oil handling personnel.

Security is provided at all oil product storage areas.

Two fences bound the above ground tank fuel storage area. A perimeter fence with a controlled access gate limits access to the fueling island contained within the area. A second fence surrounds the fuel storage tanks, secondary containment and the majority of the above ground piping associated with the area. This fence has a gate, which is normally locked, allowing access to only authorized personnel. All valves or starter controls are located within a secure locked area that can only be accessed by authorized personnel. The facility has adequate lighting to allow for the discovery of spills during hours of darkness and for the prevention of spills occurring by acts of vandalism. The starter controls on each oil pump is accessible only by a holder of a card key.
Access to the underground tanks is secured to minimize the potential of unauthorized access or vandalism.

The maintenance facility that contains the usable oil product and waste oil storage area is within a secured fenced area that limits entrance to only authorized personnel. This same area also contains the backup generator for the shops. Each building, storing oil product, is also locked to prevent unauthorized access.

This facility does not contain a tank car and tank truck loading/unloading rack.

Repairs will made and documented as per the inspection, tests, and records section above.

B. Requirements for Onshore, Non-production Facilities Storing Petroleum and Non-Petroleum Oils

The airport uses only containers compatible with the material stored and conditions of storage.

Secondary containment sufficient to contain the entire capacity of the largest single container with freeboard for precipitation will exist for all aboveground storage tanks by August 1, 2003.

The airport does not use any mobile or portable oil storage containers exceeding five gallon capacity.

C. Requirements for Animal Fats and Oils and Greases

The airport does not store animal fats, oils and greases, fish oils, or vegetable oils.
Pictures of tank farm - 2-30,000 gallon above ground storage tanks and various SPCC features.
<table>
<thead>
<tr>
<th>Figure 1 Map Location</th>
<th>Location and Description of Tank Contents</th>
<th>Major Type of Failure</th>
<th>Total Quantity</th>
<th>Dispensing Rate</th>
<th>Direction of Spill Flow</th>
<th>Secondary Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Terminal Backup Underground Diesel Fuel Tank</td>
<td>Left Unattended While Filling</td>
<td>20,000 gallons</td>
<td>NA</td>
<td>Southwest</td>
<td>No Underground Tank</td>
</tr>
<tr>
<td>A</td>
<td>Terminal Backup Underground Diesel Fuel Tank</td>
<td>Left Unattended While Filling</td>
<td>2,000 gallons</td>
<td>NA</td>
<td>Southwest</td>
<td>No Underground Tank</td>
</tr>
<tr>
<td>B</td>
<td>Federal Building Underground Diesel Fuel Tank</td>
<td>Left Unattended While Filling</td>
<td>3,000 gallons</td>
<td>NA</td>
<td>South-southwest</td>
<td>No Underground Tank</td>
</tr>
<tr>
<td>C</td>
<td>Old Terminal Underground Diesel Fuel Tank</td>
<td>Left Unattended While Filling</td>
<td>1,000 gallons</td>
<td>NA</td>
<td>Southwest-west</td>
<td>No Underground Tank</td>
</tr>
<tr>
<td>D</td>
<td>Tank Farm AST Unleaded Gasoline Tank</td>
<td>Tank Rupture or Left Unattended While Filling</td>
<td>30,000 gallons</td>
<td>Approximately 1 gpm</td>
<td>Southwest-west</td>
<td>Yes, Concrete See footnote #1</td>
</tr>
<tr>
<td>D</td>
<td>Tank Farm AST Diesel Fuel Tank</td>
<td>Tank Rupture or Left Unattended While Filling</td>
<td>30,000 gallons</td>
<td>Approximately 1 gpm</td>
<td>Southwest-west</td>
<td>Yes, Concrete See footnote #1</td>
</tr>
<tr>
<td>H</td>
<td>Old Shop Backup Generator Fuel Tank</td>
<td>Tank Rupture or Left Unattended While Filling</td>
<td>200 gallons</td>
<td>NA</td>
<td>South</td>
<td>Yes, double wall tank with leak detection.</td>
</tr>
</tbody>
</table>

NOTES:
1. Concrete Secondary Containment surrounds both tanks at location D. Containment size is 45 ftLx37 ft Wx 28in D for a total capacity of 33,215 gallons which is greater than 110% of the volume of the largest tank in the containment area.
Table 2

Oil Product Storage Drums

<table>
<thead>
<tr>
<th>Figure 1 Map Location</th>
<th>Location Description</th>
<th>Type of Oil product</th>
<th>number of drums (55 gal)¹</th>
<th>Secondary containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Old Maintenance Shop</td>
<td>Hydraulic fluid</td>
<td>6</td>
<td>Inside building with concrete floor. Floor drains to grated area, through oil water separator, to on-site wastewater lagoon. Floor dry is available to absorb majority of spill before it reaches the floor drain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor Oil</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmission Fluid</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Windshield Wash Fluid</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>New Maintenance Shop</td>
<td>Hydraulic Fluid</td>
<td>1</td>
<td>Constructed containment in explosion proof oil and fuel storage room. Floor is grated with concrete below. Secondary containment capacity - 840 gallons.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor Oil</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmission Fluid</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antifreeze</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste Oil</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Major failure for all drummed product includes overfilling, tipping or dumping, and rupturing during transfer.
Alignment Geometry Report

Project File Data

- **Name:** O:\Trimble Business Center\DEV Catron Crossing.vce
- **Size:** 127 KB
- **Modified:** 2/25/2015 12:50:24 PM (UTC-7)
- **Time zone:** Mountain Standard Time
- **Reference number:**
- **Description:**

Coordinate System

- **Name:** Default
- **Datum:** WGS 1984
- **Zone:** Default
- **Geoid:**
- **Vertical datum:**

Alignment: Catron Crossing

Units and Length

<table>
<thead>
<tr>
<th>Units</th>
<th>Length</th>
<th>Spiral Type</th>
<th>Northing</th>
<th>Easting</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>US survey foot</td>
<td>1017.381</td>
<td>Clothoid</td>
<td>POB</td>
<td>10214.720</td>
<td>11309.450</td>
</tr>
</tbody>
</table>

Line

<table>
<thead>
<tr>
<th>North Azimuth</th>
<th>Distance</th>
<th>Northing</th>
<th>Easting</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>296°20'01"</td>
<td>57.580</td>
<td>PT</td>
<td>10214.720</td>
<td>11309.450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC</td>
<td>10240.262</td>
<td>11257.845</td>
</tr>
</tbody>
</table>

Arc

<table>
<thead>
<tr>
<th>Radius</th>
<th>Delta</th>
<th>Arc length</th>
<th>Tangent</th>
<th>Northing</th>
<th>Easting</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>204.500</td>
<td>116°28'18"</td>
<td>415.710</td>
<td>330.285</td>
<td>PC</td>
<td>10240.262</td>
<td>11257.845</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td></td>
<td></td>
<td>Arc PI</td>
<td>10386.776</td>
<td>10961.835</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RP</td>
<td>10056.984</td>
<td>11167.130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PT</td>
<td>10056.492</td>
<td>10962.630</td>
</tr>
</tbody>
</table>

Line

<table>
<thead>
<tr>
<th>North Azimuth</th>
<th>Distance</th>
<th>Northing</th>
<th>Easting</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>179°51'43"</td>
<td>377.263</td>
<td>PT</td>
<td>10056.492</td>
<td>10962.630</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC</td>
<td>9679.230</td>
<td>10963.538</td>
</tr>
</tbody>
</table>

Arc

<table>
<thead>
<tr>
<th>Radius</th>
<th>Delta</th>
<th>Arc length</th>
<th>Tangent</th>
<th>Northing</th>
<th>Easting</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.000</td>
<td>40°54'14"</td>
<td>53.543</td>
<td>27.970</td>
<td>PC</td>
<td>9679.230</td>
<td>10963.538</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td></td>
<td></td>
<td>Arc PI</td>
<td>9651.260</td>
<td>10963.606</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RP</td>
<td>9679.411</td>
<td>11038.538</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PT</td>
<td>9630.165</td>
<td>10981.971</td>
</tr>
<tr>
<td>North Azimuth</td>
<td>Distance</td>
<td>Northing</td>
<td>Easting</td>
<td>Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138°57'30"</td>
<td>113.286</td>
<td>PT 9630.165</td>
<td>10981.971</td>
<td>9+04.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 9544.721</td>
<td>11056.355</td>
<td>10+17.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date: 2/25/2015 1:54:03 PM Project: O:\Trimble Business Center\DEV Catron Crossing.vce Trimble Business Center